BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30555293)

  • 21. Effects of αTAT1 and HDAC5 on axonal regeneration in adult neurons.
    Lin S; Sterling NA; Junker IP; Helm CT; Smith GM
    PLoS One; 2017; 12(5):e0177496. PubMed ID: 28505206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microtubule-associated protein 1B interaction with tubulin tyrosine ligase contributes to the control of microtubule tyrosination.
    Utreras E; Jiménez-Mateos EM; Contreras-Vallejos E; Tortosa E; Pérez M; Rojas S; Saragoni L; Maccioni RB; Avila J; González-Billault C
    Dev Neurosci; 2008; 30(1-3):200-10. PubMed ID: 18075266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. α-Tubulin Acetyltransferase Is a Novel Target Mediating Neurite Growth Inhibitory Effects of Chondroitin Sulfate Proteoglycans and Myelin-Associated Glycoprotein.
    Wong VSC; Picci C; Swift M; Levinson M; Willis D; Langley B
    eNeuro; 2018; 5(1):. PubMed ID: 29497702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The GSK3-MAP1B pathway controls neurite branching and microtubule dynamics.
    Barnat M; Benassy MN; Vincensini L; Soares S; Fassier C; Propst F; Andrieux A; von Boxberg Y; Nothias F
    Mol Cell Neurosci; 2016 Apr; 72():9-21. PubMed ID: 26773468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New HDAC6-mediated deacetylation sites of tubulin in the mouse brain identified by quantitative mass spectrometry.
    Liu N; Xiong Y; Li S; Ren Y; He Q; Gao S; Zhou J; Shui W
    Sci Rep; 2015 Nov; 5():16869. PubMed ID: 26581825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transthyretin Promotes Axon Growth
    Eira J; Magalhães J; Macedo N; Pero ME; Misgeld T; Sousa MM; Bartolini F; Liz MA
    Front Cell Dev Biol; 2021; 9():747699. PubMed ID: 34820375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6.
    Skoge RH; Ziegler M
    J Cell Sci; 2016 Aug; 129(15):2972-82. PubMed ID: 27311481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta'-iminodipropionitrile-intoxicated axon as a model system.
    Hirokawa N; Bloom GS; Vallee RB
    J Cell Biol; 1985 Jul; 101(1):227-39. PubMed ID: 2409096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching.
    Ketschek A; Jones S; Spillane M; Korobova F; Svitkina T; Gallo G
    Dev Neurobiol; 2015 Dec; 75(12):1441-61. PubMed ID: 25846486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microtubule stabilization by peloruside A and paclitaxel rescues degenerating neurons from okadaic acid-induced tau phosphorylation.
    Das V; Miller JH
    Eur J Neurosci; 2012 Jun; 35(11):1705-17. PubMed ID: 22594877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histone acetylation inhibitors promote axon growth in adult dorsal root ganglia neurons.
    Lin S; Nazif K; Smith A; Baas PW; Smith GM
    J Neurosci Res; 2015 Aug; 93(8):1215-28. PubMed ID: 25702820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microtubule-associated protein 1b (MAP1b) is concentrated in the distal region of growing axons.
    Black MM; Slaughter T; Fischer I
    J Neurosci; 1994 Feb; 14(2):857-70. PubMed ID: 8301365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The microtubule regulator
    Vargas EJM; Matamoros AJ; Qiu J; Jan CH; Wang Q; Gorczyca D; Han TW; Weissman JS; Jan YN; Banerjee S; Song Y
    Genes Dev; 2020 Feb; 34(3-4):194-208. PubMed ID: 31919191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurotoxic mechanisms of paclitaxel are local to the distal axon and independent of transport defects.
    Gornstein EL; Schwarz TL
    Exp Neurol; 2017 Feb; 288():153-166. PubMed ID: 27894788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bcl-2 protects against apoptosis-related microtubule alterations in neuronal cells.
    Nuydens R; Dispersyn G; Van Den Keiboom G; de Jong M; Connors R; Ramaekers F; Borgers M; Geerts H
    Apoptosis; 2000 Feb; 5(1):43-51. PubMed ID: 11227490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regional differences in microtubule dynamics in the axon.
    Ahmad FJ; Pienkowski TP; Baas PW
    J Neurosci; 1993 Feb; 13(2):856-66. PubMed ID: 8426241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Axon injury and stress trigger a microtubule-based neuroprotective pathway.
    Chen L; Stone MC; Tao J; Rolls MM
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11842-7. PubMed ID: 22733771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The control of microtubule stability in vitro and in transfected cells by MAP1B and SCG10.
    Bondallaz P; Barbier A; Soehrman S; Grenningloh G; Riederer BM
    Cell Motil Cytoskeleton; 2006 Nov; 63(11):681-95. PubMed ID: 17009328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fidgetin interacting with microtubule end binding protein EB3 affects axonal regrowth in spinal cord injury.
    Ma C; Wang J; Tu Q; Bo W; Hu Z; Zhuo R; Wu R; Dong Z; Qiang L; Liu Y; Liu M
    Neural Regen Res; 2023 Dec; 18(12):2727-2732. PubMed ID: 37449637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microtubule stability decreases axon elongation but not axoplasm production.
    Rochlin MW; Wickline KM; Bridgman PC
    J Neurosci; 1996 May; 16(10):3236-46. PubMed ID: 8627361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.