These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30555317)

  • 21. Identifying Persuasive Design Principles and Behavior Change Techniques Supporting End User Values and Needs in eHealth Interventions for Long-Term Weight Loss Maintenance: Qualitative Study.
    Asbjørnsen RA; Wentzel J; Smedsrød ML; Hjelmesæth J; Clark MM; Solberg Nes L; Van Gemert-Pijnen JEWC
    J Med Internet Res; 2020 Nov; 22(11):e22598. PubMed ID: 33252347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human Performance Benefits of The Automation Transparency Design Principle : Validation and Variation.
    Skraaning G; Jamieson GA
    Hum Factors; 2021 May; 63(3):379-401. PubMed ID: 31834815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a new set of Heuristics for the evaluation of Human-Robot Interaction in industrial settings: Heuristics Robots Experience (HEUROBOX).
    Apraiz A; Mulet Alberola JA; Lasa G; Mazmela M; Nguyen HN
    Front Robot AI; 2023; 10():1227082. PubMed ID: 37720419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. User-centered design and the development of patient decision aids: protocol for a systematic review.
    Witteman HO; Dansokho SC; Colquhoun H; Coulter A; Dugas M; Fagerlin A; Giguere AM; Glouberman S; Haslett L; Hoffman A; Ivers N; Légaré F; Légaré J; Levin C; Lopez K; Montori VM; Provencher T; Renaud JS; Sparling K; Stacey D; Vaisson G; Volk RJ; Witteman W
    Syst Rev; 2015 Jan; 4(1):11. PubMed ID: 25623074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developing a Shared Patient-Centered, Web-Based Medication Platform for Type 2 Diabetes Patients and Their Health Care Providers: Qualitative Study on User Requirements.
    Bernhard G; Mahler C; Seidling HM; Stützle M; Ose D; Baudendistel I; Wensing M; Szecsenyi J
    J Med Internet Res; 2018 Mar; 20(3):e105. PubMed ID: 29588269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A navigation system for increasing the autonomy and the security of powered wheelchairs.
    Fioretti S; Leo T; Longhi S
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):490-8. PubMed ID: 11204040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human Factors Considerations and Metrics in Shared Space Human-Robot Collaboration: A Systematic Review.
    Hopko S; Wang J; Mehta R
    Front Robot AI; 2022; 9():799522. PubMed ID: 35187093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Technical Development of the CeCi Social Robot.
    Flores-Vázquez C; Angulo C; Vallejo-Ramírez D; Icaza D; Pulla Galindo S
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Let's Work Together: A Meta-Analysis on Robot Design Features That Enable Successful Human-Robot Interaction at Work.
    Ötting SK; Masjutin L; Steil JJ; Maier GW
    Hum Factors; 2022 Sep; 64(6):1027-1050. PubMed ID: 33176488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation.
    Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M
    Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward a framework for levels of robot autonomy in human-robot interaction.
    Beer JM; Fisk AD; Rogers WA
    J Hum Robot Interact; 2014 Jul; 3(2):74-99. PubMed ID: 29082107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perception is Only Real When Shared: A Mathematical Model for Collaborative Shared Perception in Human-Robot Interaction.
    Matarese M; Rea F; Sciutti A
    Front Robot AI; 2022; 9():733954. PubMed ID: 35783020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assistive Robotic Manipulation through Shared Autonomy and a Body-Machine Interface.
    Jain S; Farshchiansadegh A; Broad A; Abdollahi F; Mussa-Ivaldi F; Argall B
    IEEE Int Conf Rehabil Robot; 2015 Aug; 2015():526-531. PubMed ID: 26855690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Building a Relationship between Robot Characteristics and Teleoperation User Interfaces.
    Mortimer M; Horan B; Seyedmahmoudian M
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Clinical Decision Support System for Sleep Staging Tasks With Explanations From Artificial Intelligence: User-Centered Design and Evaluation Study.
    Hwang J; Lee T; Lee H; Byun S
    J Med Internet Res; 2022 Jan; 24(1):e28659. PubMed ID: 35044311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Procedures and methods of benefit assessments for medicines in Germany].
    Bekkering GE; Kleijnen J
    Dtsch Med Wochenschr; 2008 Dec; 133 Suppl 7():S225-46. PubMed ID: 19034813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Procedures and methods of benefit assessments for medicines in Germany.
    Bekkering GE; Kleijnen J
    Eur J Health Econ; 2008 Nov; 9 Suppl 1():5-29. PubMed ID: 18987905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring Peoples' Perception of Autonomy and Reactance in Everyday AI Interactions.
    Sankaran S; Zhang C; Aarts H; Markopoulos P
    Front Psychol; 2021; 12():713074. PubMed ID: 34659025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.