These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30555520)

  • 1. Biomimetic spectro-temporal features for music instrument recognition in isolated notes and solo phrases.
    Patil K; Elhilali M
    EURASIP J Audio Speech Music Process; 2015; 2015():. PubMed ID: 30555520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptually Salient Regions of the Modulation Power Spectrum for Musical Instrument Identification.
    Thoret E; Depalle P; McAdams S
    Front Psychol; 2017; 8():587. PubMed ID: 28450846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What Constitutes a Phrase in Sound-Based Music? A Mixed-Methods Investigation of Perception and Acoustics.
    Olsen KN; Dean RT; Leung Y
    PLoS One; 2016; 11(12):e0167643. PubMed ID: 27997625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning metrics on spectrotemporal modulations reveals the perception of musical instrument timbre.
    Thoret E; Caramiaux B; Depalle P; McAdams S
    Nat Hum Behav; 2021 Mar; 5(3):369-377. PubMed ID: 33257878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perception of musical timbre by cochlear implant listeners: a multidimensional scaling study.
    Macherey O; Delpierre A
    Ear Hear; 2013; 34(4):426-36. PubMed ID: 23334356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptually salient spectrotemporal modulations for recognition of sustained musical instruments.
    Thoret E; Depalle P; McAdams S
    J Acoust Soc Am; 2016 Dec; 140(6):EL478. PubMed ID: 28039992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-frequency scattering accurately models auditory similarities between instrumental playing techniques.
    Lostanlen V; El-Hajj C; Rossignol M; Lafay G; Andén J; Lagrange M
    EURASIP J Audio Speech Music Process; 2021; 2021(1):3. PubMed ID: 33488686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast recognition of musical sounds based on timbre.
    Agus TR; Suied C; Thorpe SJ; Pressnitzer D
    J Acoust Soc Am; 2012 May; 131(5):4124-33. PubMed ID: 22559384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of spectral timbre cues and musical instrument identification in cochlear implant recipients.
    Meister H; Landwehr M; Lang-Roth R; Streicher B; Walger M
    Cochlear Implants Int; 2014 Mar; 15(2):78-86. PubMed ID: 24597635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Musical note onset detection based on a spectral sparsity measure.
    Mounir M; Karsmakers P; van Waterschoot T
    EURASIP J Audio Speech Music Process; 2021; 2021(1):30. PubMed ID: 34721557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matching Pursuit Analysis of Auditory Receptive Fields' Spectro-Temporal Properties.
    Bach JH; Kollmeier B; Anemüller J
    Front Syst Neurosci; 2017; 11():4. PubMed ID: 28232791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capturing the musical brain with Lasso: Dynamic decoding of musical features from fMRI data.
    Toiviainen P; Alluri V; Brattico E; Wallentin M; Vuust P
    Neuroimage; 2014 Mar; 88():170-80. PubMed ID: 24269803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Perceiver-Centered Approach for Representing and Annotating Prosodic Functions in Performed Music.
    Bedoya D; Fyfe L; Chew E
    Front Psychol; 2022; 13():886570. PubMed ID: 35936330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Dissociations between music and language functions after cerebral resection: A new case of amusia without aphasia].
    Peretz I; Belleville S; Fontaine S
    Can J Exp Psychol; 1997 Dec; 51(4):354-68. PubMed ID: 9687196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.
    Vuust P; Brattico E; Seppänen M; Näätänen R; Tervaniemi M
    Neuropsychologia; 2012 Jun; 50(7):1432-43. PubMed ID: 22414595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Timbre Similarity of Short Music Clips.
    Siedenburg K; Müllensiefen D
    Front Psychol; 2017; 8():639. PubMed ID: 28491045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm.
    Alluri V; Toiviainen P; Jääskeläinen IP; Glerean E; Sams M; Brattico E
    Neuroimage; 2012 Feb; 59(4):3677-89. PubMed ID: 22116038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian analysis of polyphonic western tonal music.
    Davy M; Godsill S; Idier J
    J Acoust Soc Am; 2006 Apr; 119(4):2498-517. PubMed ID: 16642862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological correlates of melodic processing in congenital amusia.
    Omigie D; Pearce MT; Williamson VJ; Stewart L
    Neuropsychologia; 2013 Aug; 51(9):1749-62. PubMed ID: 23707539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex.
    Tomita M; Eggermont JJ
    J Neurophysiol; 2005 Jan; 93(1):378-92. PubMed ID: 15342718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.