These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 30555625)
1. Synthesis and Structure-Activity Relationships of Inhibitors That Target the C-Terminal MEEVD on Heat Shock Protein 90. Rahimi MN; Buckton LK; Zaiter SS; Kho J; Chan V; Guo A; Konesan J; Kwon S; Lam LKO; Lawler MF; Leong M; Moldovan GD; Neale DA; Thornton G; McAlpine SR ACS Med Chem Lett; 2018 Feb; 9(2):73-77. PubMed ID: 30555625 [TBL] [Abstract][Full Text] [Related]
2. The first report of direct inhibitors that target the C-terminal MEEVD region on heat shock protein 90. Buckton LK; Wahyudi H; McAlpine SR Chem Commun (Camb); 2016 Jan; 52(3):501-4. PubMed ID: 26528929 [TBL] [Abstract][Full Text] [Related]
3. Structural studies on the co-chaperone Hop and its complexes with Hsp90. Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364 [TBL] [Abstract][Full Text] [Related]
4. Analysis of Hsp90 cochaperone interactions reveals a novel mechanism for TPR protein recognition. Chadli A; Bruinsma ES; Stensgard B; Toft D Biochemistry; 2008 Mar; 47(9):2850-7. PubMed ID: 18211007 [TBL] [Abstract][Full Text] [Related]
5. A Novel Class of Hsp90 C-Terminal Modulators Have Pre-Clinical Efficacy in Prostate Tumor Cells Without Induction of a Heat Shock Response. Armstrong HK; Koay YC; Irani S; Das R; Nassar ZD; ; Selth LA; Centenera MM; McAlpine SR; Butler LM Prostate; 2016 Dec; 76(16):1546-1559. PubMed ID: 27526951 [TBL] [Abstract][Full Text] [Related]
6. Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70. Carrello A; Allan RK; Morgan SL; Owen BA; Mok D; Ward BK; Minchin RF; Toft DO; Ratajczak T Cell Stress Chaperones; 2004; 9(2):167-81. PubMed ID: 15497503 [TBL] [Abstract][Full Text] [Related]
7. Protein-protein inhibitor designed de novo to target the MEEVD region on the C-terminus of Hsp90 and block co-chaperone activity. Rahimi MN; McAlpine SR Chem Commun (Camb); 2019 Jan; 55(6):846-849. PubMed ID: 30575826 [TBL] [Abstract][Full Text] [Related]
8. Design and biological testing of peptidic dimerization inhibitors of human Hsp90 that target the C-terminal domain. Bopp B; Ciglia E; Ouald-Chaib A; Groth G; Gohlke H; Jose J Biochim Biophys Acta; 2016 Jun; 1860(6):1043-55. PubMed ID: 26774645 [TBL] [Abstract][Full Text] [Related]
9. Reinventing Hsp90 Inhibitors: Blocking C-Terminal Binding Events to Hsp90 by Using Dimerized Inhibitors. Koay YC; Wahyudi H; McAlpine SR Chemistry; 2016 Dec; 22(51):18572-18582. PubMed ID: 27859703 [TBL] [Abstract][Full Text] [Related]
10. First Structural View of a Peptide Interacting with the Nucleotide Binding Domain of Heat Shock Protein 90. Raman S; Singh M; Tatu U; Suguna K Sci Rep; 2015 Nov; 5():17015. PubMed ID: 26599366 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of a designed tetratricopeptide repeat module in complex with its peptide ligand. Cortajarena AL; Wang J; Regan L FEBS J; 2010 Feb; 277(4):1058-66. PubMed ID: 20089039 [TBL] [Abstract][Full Text] [Related]
12. C-Terminal HSP90 Inhibitors Block the HIF-1 Hypoxic Response by Degrading HIF-1α through the Oxygen-Dependent Degradation Pathway. Kataria N; Martinez CA; Kerr B; Zaiter SS; Morgan M; McAlpine SR; Cook KM Cell Physiol Biochem; 2019; 53(3):480-495. PubMed ID: 31486323 [TBL] [Abstract][Full Text] [Related]
13. Domain:domain interactions within Hop, the Hsp70/Hsp90 organizing protein, are required for protein stability and structure. Carrigan PE; Sikkink LA; Smith DF; Ramirez-Alvarado M Protein Sci; 2006 Mar; 15(3):522-32. PubMed ID: 16452615 [TBL] [Abstract][Full Text] [Related]
14. Redefining the Phenotype of Heat Shock Protein 90 (Hsp90) Inhibitors. Wang Y; Koay YC; McAlpine SR Chemistry; 2017 Feb; 23(9):2010-2013. PubMed ID: 27862436 [TBL] [Abstract][Full Text] [Related]
15. Design, synthesis, and biological evaluation of ring-constrained novobiocin analogues as hsp90 C-terminal inhibitors. Garg G; Zhao H; Blagg BS ACS Med Chem Lett; 2015 Feb; 6(2):204-9. PubMed ID: 25699150 [TBL] [Abstract][Full Text] [Related]
17. Chaperone-interacting TPR proteins in Caenorhabditis elegans. Haslbeck V; Eckl JM; Kaiser CJ; Papsdorf K; Hessling M; Richter K J Mol Biol; 2013 Aug; 425(16):2922-39. PubMed ID: 23727266 [TBL] [Abstract][Full Text] [Related]
18. Binding of natural and synthetic inhibitors to human heat shock protein 90 and their clinical application. Petrikaitė V; Matulis D Medicina (Kaunas); 2011; 47(8):413-20. PubMed ID: 22123555 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of dimer formation of the 90-kDa heat-shock protein. Nemoto T; Ohara-Nemoto Y; Ota M; Takagi T; Yokoyama K Eur J Biochem; 1995 Oct; 233(1):1-8. PubMed ID: 7588731 [TBL] [Abstract][Full Text] [Related]
20. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone. Yamada S; Ono T; Mizuno A; Nemoto TK Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]