These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 30555728)
1. Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly. McCauley SJ; Hammond JI; Mabry KE Ecosphere; 2018 Mar; 9(3):. PubMed ID: 30555728 [TBL] [Abstract][Full Text] [Related]
2. Effects of experimental warming on survival, phenology and morphology of an aquatic insect (Odonata). McCauley SJ; Hammond JI; Frances DN; Mabry KE Ecol Entomol; 2015 Jun; 40(3):211-220. PubMed ID: 26028806 [TBL] [Abstract][Full Text] [Related]
3. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change. Davies WJ Ecology; 2019 Apr; 100(4):e02612. PubMed ID: 30636278 [TBL] [Abstract][Full Text] [Related]
4. Exploring the universal ecological responses to climate change in a univoltine butterfly. Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243 [TBL] [Abstract][Full Text] [Related]
5. Seasonal variation in dragonfly assemblage colouration suggests a link between thermal melanism and phenology. Novella-Fernandez R; Brandl R; Pinkert S; Zeuss D; Hof C Nat Commun; 2023 Dec; 14(1):8427. PubMed ID: 38114459 [TBL] [Abstract][Full Text] [Related]
6. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album. Braschler B; Hill JK J Anim Ecol; 2007 May; 76(3):415-23. PubMed ID: 17439459 [TBL] [Abstract][Full Text] [Related]
7. Differential larval responses of two ecologically similar insects (Odonata) to temperature and resource variation. Chavez MY; Mabry KE; McCauley SJ; Hammond JI Int J Odonatol; 2015; 18(4):297-304. PubMed ID: 30078992 [TBL] [Abstract][Full Text] [Related]
8. Warming under seminatural outdoor conditions in the larval stage negatively affects insect flight performance. Tüzün N; Op de Beeck L; Oliarinony R; Van Dievel M; Stoks R Biol Lett; 2018 May; 14(5):. PubMed ID: 29720445 [TBL] [Abstract][Full Text] [Related]
9. Phenological Shifts in a Warming World Affect Physiology and Life History in a Damselfly. Raczyński M; Stoks R; Johansson F; Bartoń K; Sniegula S Insects; 2022 Jul; 13(7):. PubMed ID: 35886798 [TBL] [Abstract][Full Text] [Related]
10. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538 [TBL] [Abstract][Full Text] [Related]
11. The effects of experimental warming on the timing of a plant-insect herbivore interaction. Kharouba HM; Vellend M; Sarfraz RM; Myers JH J Anim Ecol; 2015 May; 84(3):785-796. PubMed ID: 25535854 [TBL] [Abstract][Full Text] [Related]
12. Effects of climate warming and prolonged snow cover on phenology of the early life history stages of four alpine herbs on the southeastern Tibetan Plateau. Wang G; Baskin CC; Baskin JM; Yang X; Liu G; Ye X; Zhang X; Huang Z Am J Bot; 2018 Jun; 105(6):967-976. PubMed ID: 29927486 [TBL] [Abstract][Full Text] [Related]
13. Staying in place and moving in space: Contrasting larval thermal sensitivity explains distributional changes of sympatric sea urchin species to habitat warming. Byrne M; Gall ML; Campbell H; Lamare MD; Holmes SP Glob Chang Biol; 2022 May; 28(9):3040-3053. PubMed ID: 35108424 [TBL] [Abstract][Full Text] [Related]
14. Life-history responses to temperature and seasonality mediate ectotherm consumer-resource dynamics under climate warming. Twardochleb LA; Zarnetske PL; Klausmeier CA Proc Biol Sci; 2023 Apr; 290(1997):20222377. PubMed ID: 37122251 [TBL] [Abstract][Full Text] [Related]
15. Insect responses to seasonal time constraints under global change are facilitated by warming and counteracted by invasive alien predators. Sniegula S; Stoks R; Golab MJ Sci Rep; 2024 Oct; 14(1):24565. PubMed ID: 39427019 [TBL] [Abstract][Full Text] [Related]
16. Effects of Site Thermal Variation and Physiography on Flight Synchrony and Phenology of the North American Spruce Beetle (Coleoptera: Curculionidae, Scolytinae) and Associated Species in Colorado. Dell IH; Davis TS Environ Entomol; 2019 Aug; 48(4):998-1011. PubMed ID: 31145459 [TBL] [Abstract][Full Text] [Related]
17. Developing in a warming intertidal, negative carry over effects of heatwave conditions in development to the pentameral starfish in Parvulastra exigua. Balogh R; Byrne M Mar Environ Res; 2020 Dec; 162():105083. PubMed ID: 32810717 [TBL] [Abstract][Full Text] [Related]
18. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Ezeakacha NF; Yee DA Parasit Vectors; 2019 Mar; 12(1):123. PubMed ID: 30890161 [TBL] [Abstract][Full Text] [Related]
19. Effects of climate and demography on reproductive phenology of a harvested marine fish population. Rogers LA; Dougherty AB Glob Chang Biol; 2019 Feb; 25(2):708-720. PubMed ID: 30430699 [TBL] [Abstract][Full Text] [Related]