These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30555733)

  • 41. Reduction of CO2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine.
    Lim CH; Holder AM; Hynes JT; Musgrave CB
    J Am Chem Soc; 2014 Nov; 136(45):16081-95. PubMed ID: 25323134
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mapping free energy regimes in electrocatalytic reductions to screen transition metal-based catalysts.
    Ramakrishnan S; Moretti RA; Chidsey CED
    Chem Sci; 2019 Aug; 10(32):7649-7658. PubMed ID: 31588316
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrocatalyst Microenvironment Engineering for Enhanced Product Selectivity in Carbon Dioxide and Nitrogen Reduction Reactions.
    Wu H; Singh-Morgan A; Qi K; Zeng Z; Mougel V; Voiry D
    ACS Catal; 2023 Apr; 13(8):5375-5396. PubMed ID: 37123597
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere.
    Rauchfuss TB
    Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Concerted proton-coupled electron transfer from a metal-hydride complex.
    Bourrez M; Steinmetz R; Ott S; Gloaguen F; Hammarström L
    Nat Chem; 2014 Feb; 7(2):140-5. PubMed ID: 25615667
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydricity of an Fe-H Species and Catalytic CO2 Hydrogenation.
    Fong H; Peters JC
    Inorg Chem; 2015 Jun; 54(11):5124-35. PubMed ID: 25549663
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Nickel Dithiolate Water Reduction Catalyst Providing Ligand-Based Proton-Coupled Electron-Transfer Pathways.
    Koshiba K; Yamauchi K; Sakai K
    Angew Chem Int Ed Engl; 2017 Apr; 56(15):4247-4251. PubMed ID: 28276659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Density functional theory calculations and exploration of a possible mechanism of N2 reduction by nitrogenase.
    Huniar U; Ahlrichs R; Coucouvanis D
    J Am Chem Soc; 2004 Mar; 126(8):2588-601. PubMed ID: 14982469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalytic N
    Chalkley MJ; Del Castillo TJ; Matson BD; Roddy JP; Peters JC
    ACS Cent Sci; 2017 Mar; 3(3):217-223. PubMed ID: 28386599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theoretical Study of the Catalytic Hydrogenation of Alkenes by a Disilaferracyclic Complex: Can the Fe-Si σ-Bond-Assisted Activation of H-H Bonds Allow Development of a Catalysis of Iron?
    Tahara A; Tanaka H; Sunada Y; Shiota Y; Yoshizawa K; Nagashima H
    J Org Chem; 2016 Nov; 81(22):10900-10911. PubMed ID: 27704834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reversible Hydride Transfer to N,N'-Diarylimidazolinium Cations from Hydrogen Catalyzed by Transition Metal Complexes Mimicking the Reaction of [Fe]-Hydrogenase.
    Hatazawa M; Yoshie N; Seino H
    Inorg Chem; 2017 Jul; 56(14):8087-8099. PubMed ID: 28654277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low oxidation state iron(0), iron(I), and ruthenium(0) dinitrogen complexes with a very bulky neutral phosphine ligand.
    Gilbert-Wilson R; Field LD; Colbran SB; Bhadbhade MM
    Inorg Chem; 2013 Mar; 52(6):3043-53. PubMed ID: 23441823
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unraveling the mechanism of water oxidation catalyzed by nonheme iron complexes.
    Acuña-Parés F; Codolà Z; Costas M; Luis JM; Lloret-Fillol J
    Chemistry; 2014 May; 20(19):5696-707. PubMed ID: 24668499
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ENDOR characterization of a synthetic diiron hydrazido complex as a model for nitrogenase intermediates.
    Lees NS; McNaughton RL; Gregory WV; Holland PL; Hoffman BM
    J Am Chem Soc; 2008 Jan; 130(2):546-55. PubMed ID: 18092774
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Directing the reactivity of metal hydrides for selective CO
    Ceballos BM; Yang JY
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12686-12691. PubMed ID: 30463952
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-Resolution ENDOR Spectroscopy Combined with Quantum Chemical Calculations Reveals the Structure of Nitrogenase Janus Intermediate E
    Hoeke V; Tociu L; Case DA; Seefeldt LC; Raugei S; Hoffman BM
    J Am Chem Soc; 2019 Jul; 141(30):11984-11996. PubMed ID: 31310109
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reaction mechanism of hydrogen evolution catalysed by Co and Fe complexes containing a tetra-dentate phosphine ligand - a DFT study.
    Zhang YQ; Liao RZ
    Phys Chem Chem Phys; 2017 Dec; 19(48):32589-32596. PubMed ID: 29192296
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of an Fe≡N-NH2 Intermediate Relevant to Catalytic N2 Reduction to NH3.
    Anderson JS; Cutsail GE; Rittle J; Connor BA; Gunderson WA; Zhang L; Hoffman BM; Peters JC
    J Am Chem Soc; 2015 Jun; 137(24):7803-7809. PubMed ID: 26000443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Terminal N2 Complex of High-Spin Iron(I) in a Weak, Trigonal Ligand Field.
    McSkimming A; Harman WH
    J Am Chem Soc; 2015 Jul; 137(28):8940-3. PubMed ID: 26135639
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyclophanes as Platforms for Reactive Multimetallic Complexes.
    Ferreira RB; Murray LJ
    Acc Chem Res; 2019 Feb; 52(2):447-455. PubMed ID: 30668108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.