These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30555733)

  • 61. Isolation, observation, and computational modeling of proposed intermediates in catalytic proton reductions with the hydrogenase mimic Fe2(CO)6S2C6H4.
    Wright RJ; Zhang W; Yang X; Fasulo M; Tilley TD
    Dalton Trans; 2012 Jan; 41(1):73-82. PubMed ID: 22031098
    [TBL] [Abstract][Full Text] [Related]  

  • 62. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.
    Khadka N; Dean DR; Smith D; Hoffman BM; Raugei S; Seefeldt LC
    Inorg Chem; 2016 Sep; 55(17):8321-30. PubMed ID: 27500789
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Molecular Proceedings of Biological Hydrogen Turnover.
    Haumann M; Stripp ST
    Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cooperative Catalysis at Metal-Sulfur Bonds.
    Omann L; Königs CDF; Klare HFT; Oestreich M
    Acc Chem Res; 2017 May; 50(5):1258-1269. PubMed ID: 28406290
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Carbon Dioxide Reduction Mediated by Iron Catalysts: Mechanism and Intermediates That Guide Selectivity.
    Bonetto R; Crisanti F; Sartorel A
    ACS Omega; 2020 Sep; 5(34):21309-21319. PubMed ID: 32905319
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Energy Transduction in Nitrogenase.
    Seefeldt LC; Hoffman BM; Peters JW; Raugei S; Beratan DN; Antony E; Dean DR
    Acc Chem Res; 2018 Sep; 51(9):2179-2186. PubMed ID: 30095253
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Transformation of Fe-B@Fe into Fe-B@Ni for efficient photocatalytic hydrogen evolution.
    Li Y; Yang T; Li H; Tong R; Peng S; Han X
    J Colloid Interface Sci; 2020 Oct; 578():273-280. PubMed ID: 32531557
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.
    Choi GJ; Zhu Q; Miller DC; Gu CJ; Knowles RR
    Nature; 2016 Nov; 539(7628):268-271. PubMed ID: 27732585
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Successive heterolytic cleavages of H2 achieve N2 splitting on silica-supported tantalum hydrides: a DFT proposed mechanism.
    Solans-Monfort X; Chow C; Gouré E; Kaya Y; Basset JM; Taoufik M; Quadrelli EA; Eisenstein O
    Inorg Chem; 2012 Jul; 51(13):7237-49. PubMed ID: 22712747
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-H(delta-)...H(delta+)-O, bond and methenyl-H4MPT+ triggered hydride transfer.
    Yang X; Hall MB
    J Am Chem Soc; 2009 Aug; 131(31):10901-8. PubMed ID: 19722671
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Insight into the Iron-Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands.
    Čorić I; Holland PL
    J Am Chem Soc; 2016 Jun; 138(23):7200-11. PubMed ID: 27171599
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Accelerating proton-coupled electron transfer of metal hydrides in catalyst model reactions.
    Liu T; Guo M; Orthaber A; Lomoth R; Lundberg M; Ott S; Hammarström L
    Nat Chem; 2018 Aug; 10(8):881-887. PubMed ID: 30013192
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Redox tuning over almost 1 V in a structurally conserved active site: lessons from Fe-containing superoxide dismutase.
    Miller AF
    Acc Chem Res; 2008 Apr; 41(4):501-10. PubMed ID: 18376853
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cation-modulated electron-transfer channel: H-atom transfer vs proton-coupled electron transfer with a variable electron-transfer channel in acylamide units.
    Chen X; Bu Y
    J Am Chem Soc; 2007 Aug; 129(31):9713-20. PubMed ID: 17636909
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Selective Catalytic Reduction of N
    Hill PJ; Doyle LR; Crawford AD; Myers WK; Ashley AE
    J Am Chem Soc; 2016 Oct; 138(41):13521-13524. PubMed ID: 27700079
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Reactivity of [Fe
    Lee CC; Stiebritz MT; Hu Y
    Acc Chem Res; 2019 May; 52(5):1168-1176. PubMed ID: 30977994
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biomimetics of [NiFe]-Hydrogenase: Nickel- or Iron-Centered Proton Reduction Catalysis?
    Tang H; Hall MB
    J Am Chem Soc; 2017 Dec; 139(49):18065-18070. PubMed ID: 29135248
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.