These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30555898)

  • 1. Using Machine Learning To Predict Suitable Conditions for Organic Reactions.
    Gao H; Struble TJ; Coley CW; Wang Y; Green WH; Jensen KF
    ACS Cent Sci; 2018 Nov; 4(11):1465-1476. PubMed ID: 30555898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning To Predict Reaction Conditions: Relationships between Solvent, Molecular Structure, and Catalyst.
    Walker E; Kammeraad J; Goetz J; Robo MT; Tewari A; Zimmerman PM
    J Chem Inf Model; 2019 Sep; 59(9):3645-3654. PubMed ID: 31381340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expert system for predicting reaction conditions: the Michael reaction case.
    Marcou G; Aires de Sousa J; Latino DA; de Luca A; Horvath D; Rietsch V; Varnek A
    J Chem Inf Model; 2015 Feb; 55(2):239-50. PubMed ID: 25588070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reagent prediction with a molecular transformer improves reaction data quality.
    Andronov M; Voinarovska V; Andronova N; Wand M; Clevert DA; Schmidhuber J
    Chem Sci; 2023 Mar; 14(12):3235-3246. PubMed ID: 36970100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling an organic synthesis robot with machine learning to search for new reactivity.
    Granda JM; Donina L; Dragone V; Long DL; Cronin L
    Nature; 2018 Jul; 559(7714):377-381. PubMed ID: 30022133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Machine Learning for Chemical Catalysis: Prospects and Challenges.
    Singh S; Sunoj RB
    Acc Chem Res; 2023 Feb; 56(3):402-412. PubMed ID: 36715248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Optimal Conditions of Hydrogenation Reaction Using the Likelihood Ranking Approach.
    Afonina VA; Mazitov DA; Nurmukhametova A; Shevelev MD; Khasanova DA; Nugmanov RI; Burilov VA; Madzhidov TI; Varnek A
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural learning rules for generating flexible predictions and computing the successor representation.
    Fang C; Aronov D; Abbott LF; Mackevicius EL
    Elife; 2023 Mar; 12():. PubMed ID: 36928104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative Modeling to Predict Multiple Suitable Conditions for Chemical Reactions.
    Kwon Y; Kim S; Choi YS; Kang S
    J Chem Inf Model; 2022 Dec; 62(23):5952-5960. PubMed ID: 36413480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors.
    Guan Y; Coley CW; Wu H; Ranasinghe D; Heid E; Struble TJ; Pattanaik L; Green WH; Jensen KF
    Chem Sci; 2020 Dec; 12(6):2198-2208. PubMed ID: 34163985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-Learning-Guided Discovery of Electrochemical Reactions.
    Zahrt AF; Mo Y; Nandiwale KY; Shprints R; Heid E; Jensen KF
    J Am Chem Soc; 2022 Dec; 144(49):22599-22610. PubMed ID: 36459170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Organic Reaction Outcomes Using Machine Learning.
    Coley CW; Barzilay R; Jaakkola TS; Green WH; Jensen KF
    ACS Cent Sci; 2017 May; 3(5):434-443. PubMed ID: 28573205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbation-Theory and Machine Learning (PTML) Model for High-Throughput Screening of Parham Reactions: Experimental and Theoretical Studies.
    Simón-Vidal L; García-Calvo O; Oteo U; Arrasate S; Lete E; Sotomayor N; González-Díaz H
    J Chem Inf Model; 2018 Jul; 58(7):1384-1396. PubMed ID: 29898360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification.
    Baylon JL; Cilfone NA; Gulcher JR; Chittenden TW
    J Chem Inf Model; 2019 Feb; 59(2):673-688. PubMed ID: 30642173
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.