BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30556060)

  • 1. Volume-of-interest CT imaging with dynamic beam filtering using multiple aperture devices.
    Wang W; Gang GJ; Mao A; Sisniega A; Siewerdsen JH; Stayman JW
    Conf Proc Int Conf Image Form Xray Comput Tomogr; 2018 May; 2018():213-217. PubMed ID: 30556060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volume-of-interest imaging with dynamic fluence modulation using multiple aperture devices.
    Wang W; Gang GJ; Siewerdsen JH; Levinson R; Kawamoto S; Stayman JW
    J Med Imaging (Bellingham); 2019 Jul; 6(3):033504. PubMed ID: 31528659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume-of-interest Imaging Using Multiple Aperture Devices.
    Wang W; Gang GJ; Siewerdsen JH; Stayman JW
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10948():. PubMed ID: 31057199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic fluence field modulation in computed tomography using multiple aperture devices.
    Gang GJ; Mao A; Wang W; Siewerdsen JH; Mathews A; Kawamoto S; Levinson R; Stayman JW
    Phys Med Biol; 2019 May; 64(10):105024. PubMed ID: 30939459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluence-Field Modulated X-ray CT using Multiple Aperture Devices.
    Stayman JW; Mathews A; Zbijewski W; Gang G; Siewerdsen J; Kawamoto S; Blevis I; Levinson R
    Proc SPIE Int Soc Opt Eng; 2016 Feb; 9783():. PubMed ID: 27110052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High resolution dual detector volume-of-interest cone beam breast CT--Demonstration with a bench top system.
    Shen Y; Yi Y; Zhong Y; Lai CJ; Liu X; You Z; Ge S; Wang T; Shaw CC
    Med Phys; 2011 Dec; 38(12):6429-42. PubMed ID: 22149826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic fluence field modulation for miscentered patients in computed tomography.
    Mao A; Gang GJ; Shyr W; Levinson R; Siewerdsen JH; Kawamoto S; Webster Stayman J
    J Med Imaging (Bellingham); 2018 Oct; 5(4):043501. PubMed ID: 30397631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic beam filtering for miscentered patients.
    Mao A; Shyr W; Gang GJ; Stayman JW
    Proc SPIE Int Soc Opt Eng; 2018 Feb; 10573():. PubMed ID: 29622854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation and Assessment of Dynamic Fluence Field Modulation with Multiple Aperture Devices.
    Gang GJ; Mao A; Siewerdsen JH; Stayman JW
    Conf Proc Int Conf Image Form Xray Comput Tomogr; 2018 May; 2018():47-51. PubMed ID: 30506056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evaluation of dual Multiple Aperture Devices for Fluence Field Modulated X-Ray Computed Tomography.
    Mathews AJ; Gang G; Levinson R; Zbijewski W; Kawamoto S; Siewerdsen JH; Stayman JW
    Proc SPIE Int Soc Opt Eng; 2017 Feb; 10132():. PubMed ID: 28603335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of dual multiple aperture devices for dynamical fluence field modulated CT.
    Mathews AJ; Tilley S; Gang G; Kawamoto S; Zbijewski W; Siewerdsen JH; Levinson R; Webster Stayman J
    Conf Proc Int Conf Image Form Xray Comput Tomogr; 2016 Jul; 2016():29-32. PubMed ID: 28361128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The z-sbDBA, a new concept for a dynamic sheet-based fluence field modulator in x-ray CT.
    Huck SM; Fung GSK; Parodi K; Stierstorfer K
    Med Phys; 2020 Oct; 47(10):4827-4837. PubMed ID: 32754971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of kV CBCT image quality and dose reduction for volume-of-interest imaging using dynamic collimation.
    Parsons D; Robar JL
    Med Phys; 2015 Sep; 42(9):5258-69. PubMed ID: 26328975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realization of fluence field modulated CT on a clinical TomoTherapy megavoltage CT system.
    Szczykutowicz TP; Hermus J; Geurts M; Smilowitz J
    Phys Med Biol; 2015 Sep; 60(18):7245-57. PubMed ID: 26348406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving image quality and reducing dose with 2.5 MV diamond target volume-of-interest cone beam CT imaging.
    Borsavage JM; Cherpak AJ; Robar JL
    Med Phys; 2022 Dec; 49(12):7661-7671. PubMed ID: 36106659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the potential of ROI imaging in x-ray CT - A comparison of novel dynamic beam attenuators with current technology.
    Huck SM; Fung GSK; Parodi K; Stierstorfer K
    Med Phys; 2021 Jul; 48(7):3479-3499. PubMed ID: 33838055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume-of-interest cone-beam CT using a 2.35 MV beam generated with a carbon target.
    Robar JL; Parsons D; Berman A; Macdonald A
    Med Phys; 2012 Jul; 39(7):4209-18. PubMed ID: 22830754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation doses in volume-of-interest breast computed tomography--A Monte Carlo simulation study.
    Lai CJ; Zhong Y; Yi Y; Wang T; Shaw CC
    Med Phys; 2015 Jun; 42(6):3063-75. PubMed ID: 26127058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of volume-of-interest (VOI) scanning technique in cone beam breast CT--a preliminary study.
    Chen L; Shaw CC; Altunbas MC; Lai CJ; Liu X; Han T; Wang T; Yang WT; Whitman GJ
    Med Phys; 2008 Aug; 35(8):3482-90. PubMed ID: 18777908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TU-E-BRA-11: Volume of Interest Cone Beam CT with a Low-Z Linear Accelerator Target: Proof-of-Concept.
    Robar J; Parsons D; Berman A; MacDonald A
    Med Phys; 2012 Jun; 39(6Part24):3913. PubMed ID: 28518658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.