BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30556060)

  • 21. Reduction in x-ray scatter and radiation dose for volume-of-interest (VOI) cone-beam breast CT--a phantom study.
    Lai CJ; Chen L; Zhang H; Liu X; Zhong Y; Shen Y; Han T; Ge S; Yi Y; Wang T; Yang WT; Whitman GJ; Shaw CC
    Phys Med Biol; 2009 Nov; 54(21):6691-709. PubMed ID: 19841514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Creation of an atlas of filter positions for fluence field modulated CT.
    Szczykutowicz TP; Hermus J
    Med Phys; 2015 Apr; 42(4):1779-86. PubMed ID: 25832068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Current modulated volume-of-interest imaging for kilovoltage intrafaction monitoring of the prostate.
    Parsons D; Stevens MT; Robar JL
    Med Phys; 2017 Apr; 44(4):1479-1493. PubMed ID: 28133744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Volume of interest CBCT and tube current modulation for image guidance using dynamic kV collimation.
    Parsons D; Robar JL
    Med Phys; 2016 Apr; 43(4):1808. PubMed ID: 27036578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Volume-of-interest (VOI) imaging in C-arm flat-detector CT for high image quality at reduced dose.
    Kolditz D; Kyriakou Y; Kalender WA
    Med Phys; 2010 Jun; 37(6):2719-30. PubMed ID: 20632582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of a secondary VOI protocol for lung imaging in a clinical CT scanner.
    Larsen TC; Gopalakrishnan V; Yao J; Nguyen CP; Chen MY; Moss J; Wen H
    J Appl Clin Med Phys; 2018 Jul; 19(4):271-280. PubMed ID: 29785839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual resolution cone beam breast CT: a feasibility study.
    Chen L; Shen Y; Lai CJ; Han T; Zhong Y; Ge S; Liu X; Wang T; Yang WT; Whitman GJ; Shaw CC
    Med Phys; 2009 Sep; 36(9):4007-14. PubMed ID: 19810473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization for customized trajectories in cone beam computed tomography.
    Hatamikia S; Biguri A; Kronreif G; Kettenbach J; Russ T; Furtado H; Shiyam Sundar LK; Buschmann M; Unger E; Figl M; Georg D; Birkfellner W
    Med Phys; 2020 Oct; 47(10):4786-4799. PubMed ID: 32679623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Added Value of Volume-of-Interest C-Arm CT Imaging during Endovascular Treatment of Intracranial Aneurysms.
    Chintalapani G; Chinnadurai P; Maier A; Xia Y; Bauer S; Shaltoni H; Morsi H; Mawad ME
    AJNR Am J Neuroradiol; 2016 Apr; 37(4):660-6. PubMed ID: 26659340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic intensity-weighted region of interest imaging for conebeam CT.
    Pearson E; Pan X; Pelizzari C
    J Xray Sci Technol; 2016 Mar; 24(3):361-77. PubMed ID: 27257875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compensator models for fluence field modulated computed tomography.
    Bartolac S; Jaffray D
    Med Phys; 2013 Dec; 40(12):121909. PubMed ID: 24320520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iterative volume of interest based 4D cone-beam CT.
    Martin R; Ahmad M; Hugo G; Pan T
    Med Phys; 2017 Dec; 44(12):6515-6528. PubMed ID: 28898423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Technical Note: Sheet-based dynamic beam attenuator - A novel concept for dynamic fluence field modulation in x-ray CT.
    Huck SM; Fung GSK; Parodi K; Stierstorfer K
    Med Phys; 2019 Dec; 46(12):5528-5537. PubMed ID: 31348527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A study to improve the image quality in low-dose computed tomography (SPECT) using filtration.
    Kheruka S; Naithani U; Maurya A; Painuly N; Aggarwal L; Gambhir S
    Indian J Nucl Med; 2011 Jan; 26(1):14-21. PubMed ID: 21969774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-Dose Volume-of-Interest C-Arm CT Imaging of Intracranial Stents and Flow Diverters.
    Yang P; Ahmed A; Schafer S; Niemann D; Aagaard-Kienitz B; Royalty K; Strother C
    AJNR Am J Neuroradiol; 2016 Apr; 37(4):648-54. PubMed ID: 26494692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluence field optimization for noise and dose objectives in CT.
    Bartolac S; Graham S; Siewerdsen J; Jaffray D
    Med Phys; 2011 Jul; 38 Suppl 1():S2. PubMed ID: 21978114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners.
    Ay MR; Mehranian A; Maleki A; Ghadiri H; Ghafarian P; Zaidi H
    Phys Med; 2013 May; 29(3):249-60. PubMed ID: 22541061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of fluence field modulation to proton computed tomography for proton therapy imaging.
    Dedes G; De Angelis L; Rit S; Hansen D; Belka C; Bashkirov V; Johnson RP; Coutrakon G; Schubert KE; Schulte RW; Parodi K; Landry G
    Phys Med Biol; 2017 Jul; 62(15):6026-6043. PubMed ID: 28582265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fluence modulation and scatter shielding apparatus for dedicated breast CT: Theory of operation.
    Ghazi P
    Med Phys; 2020 Apr; 47(4):1590-1608. PubMed ID: 31955431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SU-F-BRCD-07: Experimental Validation of Fluence Field Modulation for Noise and Dose Management in CT.
    Bartolac S; Jaffray D
    Med Phys; 2012 Jun; 39(6Part20):3857. PubMed ID: 28517545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.