These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30556459)

  • 1. A 3D Convolutional Neural Network to Model Retinal Ganglion Cell's Responses to Light Patterns in Mice.
    Lozano A; Soto-Sánchez C; Garrigós J; Martínez JJ; Ferrández JM; Fernández E
    Int J Neural Syst; 2018 Dec; 28(10):1850043. PubMed ID: 30556459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multineuronal firing patterns in the signal from eye to brain.
    Schnitzer MJ; Meister M
    Neuron; 2003 Feb; 37(3):499-511. PubMed ID: 12575956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spatial structure of a nonlinear receptive field.
    Schwartz GW; Okawa H; Dunn FA; Morgan JL; Kerschensteiner D; Wong RO; Rieke F
    Nat Neurosci; 2012 Nov; 15(11):1572-80. PubMed ID: 23001060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.
    Onken A; Liu JK; Karunasekara PP; Delis I; Gollisch T; Panzeri S
    PLoS Comput Biol; 2016 Nov; 12(11):e1005189. PubMed ID: 27814363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring hidden structure in multilayered neural circuits.
    Maheswaranathan N; Kastner DB; Baccus SA; Ganguli S
    PLoS Comput Biol; 2018 Aug; 14(8):e1006291. PubMed ID: 30138312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the impact of common noise inputs on the network activity of retinal ganglion cells.
    Vidne M; Ahmadian Y; Shlens J; Pillow JW; Kulkarni J; Litke AM; Chichilnisky EJ; Simoncelli E; Paninski L
    J Comput Neurosci; 2012 Aug; 33(1):97-121. PubMed ID: 22203465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population coding in spike trains of simultaneously recorded retinal ganglion cells.
    Fernández E; Ferrandez J; Ammermüller J; Normann RA
    Brain Res; 2000 Dec; 887(1):222-9. PubMed ID: 11134610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A test of metabolically efficient coding in the retina.
    Balasubramanian V; Berry MJ
    Network; 2002 Nov; 13(4):531-52. PubMed ID: 12463343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells.
    Murphy GJ; Rieke F
    Neuron; 2006 Nov; 52(3):511-24. PubMed ID: 17088216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Firing rates and dynamic correlated activities of ganglion cells both contribute to retinal information processing.
    Chen AH; Zhou Y; Gong HQ; Liang PJ
    Brain Res; 2004 Aug; 1017(1-2):13-20. PubMed ID: 15261094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency of information transmission by retinal ganglion cells.
    Koch K; McLean J; Berry M; Sterling P; Balasubramanian V; Freed MA
    Curr Biol; 2004 Sep; 14(17):1523-30. PubMed ID: 15341738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse.
    Stasheff SF
    J Neurophysiol; 2008 Mar; 99(3):1408-21. PubMed ID: 18216234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid neural coding in the retina with relative spike latencies.
    Gollisch T; Meister M
    Science; 2008 Feb; 319(5866):1108-11. PubMed ID: 18292344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional neural network models of V1 responses to complex patterns.
    Zhang Y; Lee TS; Li M; Liu F; Tang S
    J Comput Neurosci; 2019 Feb; 46(1):33-54. PubMed ID: 29869761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of correlated activity between parasol retinal ganglion cells.
    Trong PK; Rieke F
    Nat Neurosci; 2008 Nov; 11(11):1343-51. PubMed ID: 18820692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding visual information from a population of retinal ganglion cells.
    Warland DK; Reinagel P; Meister M
    J Neurophysiol; 1997 Nov; 78(5):2336-50. PubMed ID: 9356386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells.
    Cui Y; Wang YV; Park SJ; Demb JB; Butts DA
    Elife; 2016 Nov; 5():. PubMed ID: 27841746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Convolutional Neural Network-based Model of Neural Pathways in the Retina
    Zamani Y; Nategh N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6906-6909. PubMed ID: 31947427
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.