BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30556763)

  • 1. Controlling the internal morphology of aqueous core-PLGA shell microcapsules: promoting the internal phase separation via alcohol addition.
    Abulateefeh SR; Al-Adhami GK; Alkawareek MY; Alkilany AM
    Pharm Dev Technol; 2019 Jul; 24(6):671-679. PubMed ID: 30556763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Aqueous Core-Poly(d,l-Lactide-co-Glycolide) Shell Microcapsules With Mononuclear Cores by Internal Phase Separation: Optimization of Formulation Parameters.
    Abulateefeh SR; Alkawareek MY; Abdullah FR; Alkilany AM
    J Pharm Sci; 2017 Apr; 106(4):1136-1142. PubMed ID: 28057545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Characterization of PLGA Shell Microcapsules Containing Aqueous Cores Prepared by Internal Phase Separation.
    Abulateefeh SR; Alkilany AM
    AAPS PharmSciTech; 2016 Aug; 17(4):891-7. PubMed ID: 26416284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable sustained release drug delivery system based on mononuclear aqueous core-polymer shell microcapsules.
    Abulateefeh SR; Alkawareek MY; Alkilany AM
    Int J Pharm; 2019 Mar; 558():291-298. PubMed ID: 30641178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse liquid-filled biodegradable microcapsules.
    Berkland C; Pollauf E; Varde N; Pack DW; Kim KK
    Pharm Res; 2007 May; 24(5):1007-13. PubMed ID: 17372691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro.
    Liu R; Huang SS; Wan YH; Ma GH; Su ZG
    Colloids Surf B Biointerfaces; 2006 Aug; 51(1):30-8. PubMed ID: 16814994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous core microcapsules as potential long-acting release systems for hydrophilic drugs.
    Abuhamdan RM; Al-Anati BH; Al Thaher Y; Shraideh ZA; Alkawareek MY; Abulateefeh SR
    Int J Pharm; 2021 Sep; 606():120926. PubMed ID: 34303818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of core-shell microcapsules using PLGA and alginate for dual growth factor delivery system.
    Choi DH; Park CH; Kim IH; Chun HJ; Park K; Han DK
    J Control Release; 2010 Oct; 147(2):193-201. PubMed ID: 20647022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benign preparation of aqueous core poly lactic-co-glycolic acid (PLGA) microcapsules.
    Nomura T; Routh AF
    J Colloid Interface Sci; 2018 Mar; 513():1-9. PubMed ID: 29128617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method of preparing PLGA microcapsules utilizing methylethyl ketone.
    Sah H; Smith MS; Chern RT
    Pharm Res; 1996 Mar; 13(3):360-7. PubMed ID: 8692726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(D,L-lactide-co-glycolide) encapsulated poly(vinyl alcohol) hydrogel as a drug delivery system.
    Mandal TK; Bostanian LA; Graves RA; Chapman SR
    Pharm Res; 2002 Nov; 19(11):1713-9. PubMed ID: 12458678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform titanium dioxide (TiO(2)) microcapsules prepared by glass membrane emulsification with subsequent solvent evaporation.
    Supsakulchai A; Ma GH; Nagai M; Omi S
    J Microencapsul; 2002; 19(4):425-49. PubMed ID: 12396381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives.
    Yamaguchi Y; Takenaga M; Kitagawa A; Ogawa Y; Mizushima Y; Igarashi R
    J Control Release; 2002 Jun; 81(3):235-49. PubMed ID: 12044564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication strategy for amphiphilic microcapsules with narrow size distribution by premix membrane emulsification.
    Wei Y; Wang Y; Wang L; Hao D; Ma G
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):399-408. PubMed ID: 21683559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of co-solvents on the characteristics of enkephalin microcapsules.
    Graves RA; Freeman T; Pamajula S; Praetorius N; Moiseyev R; Mandal TK
    J Biomater Sci Polym Ed; 2006; 17(6):709-20. PubMed ID: 16892730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein release profiles and morphology of biodegradable microcapsules containing an oily core.
    Youan BB; Jackson TL; Dickens L; Hernandez C; Owusu-Ababio G
    J Control Release; 2001 Oct; 76(3):313-26. PubMed ID: 11578745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulating acetaminophen into poly(L-lactide) microcapsules by solvent-evaporation technique in an O/W emulsion.
    Lai MK; Tsiang RC
    J Microencapsul; 2004 May; 21(3):307-16. PubMed ID: 15204597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and release characteristics of poly(D,L-lactide-co-glycolide) encapsulated CaPi-DNA coprecipitation.
    Li Y; Ogris M; Pelisek J; Röedl W
    Int J Pharm; 2004 Jan; 269(1):61-70. PubMed ID: 14698577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable microcapsules prepared by a w/o/w technique: effects of shear force to make a primary w/o emulsion on their morphology and protein release.
    Sah HK; Toddywala R; Chien YW
    J Microencapsul; 1995; 12(1):59-69. PubMed ID: 7730957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant biocompatible and biodegradable PEG-PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets.
    Foster T; Dorfman KD; Davis HT
    J Colloid Interface Sci; 2010 Nov; 351(1):140-50. PubMed ID: 20627256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.