These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30556897)

  • 1. Structure-guided design combined with evolutionary diversity led to the discovery of the xylose-releasing exo-xylanase activity in the glycoside hydrolase family 43.
    Zanphorlin LM; de Morais MAB; Diogo JA; Domingues MN; de Souza FHM; Ruller R; Murakami MT
    Biotechnol Bioeng; 2019 Apr; 116(4):734-744. PubMed ID: 30556897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Glycoside Hydrolase Family 8 Reducing-End Xylose-Releasing Exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 Is Active on Branched Xylooligosaccharides.
    Valenzuela SV; Lopez S; Biely P; Sanz-Aparicio J; Pastor FI
    Appl Environ Microbiol; 2016 Sep; 82(17):5116-24. PubMed ID: 27316951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125.
    Fushinobu S; Hidaka M; Honda Y; Wakagi T; Shoun H; Kitaoka M
    J Biol Chem; 2005 Apr; 280(17):17180-6. PubMed ID: 15718242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of the reducing-end xylose-releasing exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 deciphers its molecular specificity.
    Jiménez-Ortega E; Valenzuela S; Ramírez-Escudero M; Pastor FJ; Sanz-Aparicio J
    FEBS J; 2020 Dec; 287(24):5362-5374. PubMed ID: 32352213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues.
    Brüx C; Ben-David A; Shallom-Shezifi D; Leon M; Niefind K; Shoham G; Shoham Y; Schomburg D
    J Mol Biol; 2006 May; 359(1):97-109. PubMed ID: 16631196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of product inhibition by arabinose and xylose of the thermostable GH43 β-1,4-xylosidase from Geobacillus thermoleovorans IT-08.
    Rohman A; van Oosterwijk N; Puspaningsih NNT; Dijkstra BW
    PLoS One; 2018; 13(4):e0196358. PubMed ID: 29698436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan.
    Charnock SJ; Lakey JH; Virden R; Hughes N; Sinnott ML; Hazlewood GP; Pickersgill R; Gilbert HJ
    J Biol Chem; 1997 Jan; 272(5):2942-51. PubMed ID: 9006940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase.
    Sidhu G; Withers SG; Nguyen NT; McIntosh LP; Ziser L; Brayer GD
    Biochemistry; 1999 Apr; 38(17):5346-54. PubMed ID: 10220321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase.
    Honda Y; Kitaoka M
    J Biol Chem; 2004 Dec; 279(53):55097-103. PubMed ID: 15491996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved.
    Charnock SJ; Spurway TD; Xie H; Beylot MH; Virden R; Warren RA; Hazlewood GP; Gilbert HJ
    J Biol Chem; 1998 Nov; 273(48):32187-99. PubMed ID: 9822697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides.
    Lagaert S; Pollet A; Delcour JA; Lavigne R; Courtin CM; Volckaert G
    Appl Microbiol Biotechnol; 2011 Dec; 92(6):1179-85. PubMed ID: 21691791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan.
    Yang X; Shi P; Huang H; Luo H; Wang Y; Zhang W; Yao B
    Food Chem; 2014 Apr; 148():381-7. PubMed ID: 24262572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from
    Matsuyama K; Kishine N; Fujimoto Z; Sunagawa N; Kotake T; Tsumuraya Y; Samejima M; Igarashi K; Kaneko S
    J Biol Chem; 2020 Dec; 295(52):18539-18552. PubMed ID: 33093171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-substrate complex structures of a GH39 beta-xylosidase from Geobacillus stearothermophilus.
    Czjzek M; Ben David A; Bravman T; Shoham G; Henrissat B; Shoham Y
    J Mol Biol; 2005 Nov; 353(4):838-46. PubMed ID: 16212978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absence or presence of metal ion activation in two structurally similar GH43 β-xylosidases.
    Jordan DB; Stoller JR; Kibblewhite RE; Chan VJ; Lee CC; Wagschal K
    Enzyme Microb Technol; 2018 Jul; 114():29-32. PubMed ID: 29685350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86.
    Fujimoto Z; Kaneko S; Kuno A; Kobayashi H; Kusakabe I; Mizuno H
    J Biol Chem; 2004 Mar; 279(10):9606-14. PubMed ID: 14670957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GH30 Glucuronoxylan-Specific Xylanase from Streptomyces turgidiscabies C56.
    Maehara T; Yagi H; Sato T; Ohnishi-Kameyama M; Fujimoto Z; Kamino K; Kitamura Y; St John F; Yaoi K; Kaneko S
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based protein engineering of bacterial β-xylosidase to increase the production yield of xylobiose from xylose.
    Hong S; Kyung M; Jo I; Kim YR; Ha NC
    Biochem Biophys Res Commun; 2018 Jun; 501(3):703-710. PubMed ID: 29752942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel β-xylosidase structure from Geobacillus thermoglucosidasius: the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds.
    Espina G; Eley K; Pompidor G; Schneider TR; Crennell SJ; Danson MJ
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1366-74. PubMed ID: 24816105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.