BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30556925)

  • 21. Exploiting B-cell Receptor Stereotypy to Design Tailored Immunotherapy in Chronic Lymphocytic Leukemia.
    Rovida A; Maccalli C; Scarfò L; Dellabona P; Stamatopoulos K; Ghia P
    Clin Cancer Res; 2021 Feb; 27(3):729-739. PubMed ID: 33051305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. B-cell antigen receptor expression and phosphatidylinositol 3-kinase signaling regulate genesis and maintenance of mouse chronic lymphocytic leukemia.
    Schmid VK; Khadour A; Ahmed N; Brandl C; Nitschke L; Rajewsky K; Jumaa H; Hobeika E
    Haematologica; 2022 Aug; 107(8):1796-1814. PubMed ID: 35021605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IGHV3-21 gene usage is associated with high TCL1 expression in chronic lymphocytic leukemia.
    Mansouri MR; Sevov M; Aleskog A; Jondal M; Merup M; Sundström C; Osorio L; Rosenquist R
    Eur J Haematol; 2010 Feb; 84(2):109-16. PubMed ID: 19889012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells.
    Hashimoto S; Dono M; Wakai M; Allen SL; Lichtman SM; Schulman P; Vinciguerra VP; Ferrarini M; Silver J; Chiorazzi N
    J Exp Med; 1995 Apr; 181(4):1507-17. PubMed ID: 7535340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mouse model for chronic lymphocytic leukemia based on expression of the SV40 large T antigen.
    ter Brugge PJ; Ta VB; de Bruijn MJ; Keijzers G; Maas A; van Gent DC; Hendriks RW
    Blood; 2009 Jul; 114(1):119-27. PubMed ID: 19332766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Chromatin Immunoprecipitation Assay to Identify Novel NFAT2 Target Genes in Chronic Lymphocytic Leukemia.
    Fuchs AR; Märklin M; Heitmann JS; Futterknecht S; Haap M; Wirths S; Kopp HG; Hinterleitner C; Dörfel D; Müller MR
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30582586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early generated B1 B cells with restricted BCRs become chronic lymphocytic leukemia with continued c-Myc and low Bmf expression.
    Hayakawa K; Formica AM; Brill-Dashoff J; Shinton SA; Ichikawa D; Zhou Y; Morse HC; Hardy RR
    J Exp Med; 2016 Dec; 213(13):3007-3024. PubMed ID: 27899442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exome sequencing of the TCL1 mouse model for CLL reveals genetic heterogeneity and dynamics during disease development.
    Zaborsky N; Gassner FJ; Höpner JP; Schubert M; Hebenstreit D; Stark R; Asslaber D; Steiner M; Geisberger R; Greil R; Egle A
    Leukemia; 2019 Apr; 33(4):957-968. PubMed ID: 30262843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Richter's and prolymphocytic transformation of chronic lymphocytic leukemia are associated with high mRNA expression of activation-induced cytidine deaminase and aberrant somatic hypermutation.
    Reiniger L; Bödör C; Bognár A; Balogh Z; Csomor J; Szepesi A; Kopper L; Matolcsy A
    Leukemia; 2006 Jun; 20(6):1089-95. PubMed ID: 16541139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ROR1 can interact with TCL1 and enhance leukemogenesis in Eμ-TCL1 transgenic mice.
    Widhopf GF; Cui B; Ghia EM; Chen L; Messer K; Shen Z; Briggs SP; Croce CM; Kipps TJ
    Proc Natl Acad Sci U S A; 2014 Jan; 111(2):793-8. PubMed ID: 24379361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic lymphocytic leukemia disease progression is accelerated by APRIL-TACI interaction in the TCL1 transgenic mouse model.
    Lascano V; Guadagnoli M; Schot JG; Luijks DM; Guikema JE; Cameron K; Hahne M; Pals S; Slinger E; Kipps TJ; van Oers MH; Eldering E; Medema JP; Kater AP
    Blood; 2013 Dec; 122(24):3960-3. PubMed ID: 24100449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathogen-specific B-cell receptors drive chronic lymphocytic leukemia by light-chain-dependent cross-reaction with autoantigens.
    Jiménez de Oya N; De Giovanni M; Fioravanti J; Übelhart R; Di Lucia P; Fiocchi A; Iacovelli S; Efremov DG; Caligaris-Cappio F; Jumaa H; Ghia P; Guidotti LG; Iannacone M
    EMBO Mol Med; 2017 Nov; 9(11):1482-1490. PubMed ID: 28899929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia.
    Herling M; Patel KA; Weit N; Lilienthal N; Hallek M; Keating MJ; Jones D
    Blood; 2009 Nov; 114(21):4675-86. PubMed ID: 19770358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of rapamycin on mouse chronic lymphocytic leukemia and the development of nonhematopoietic malignancies in Emu-TCL1 transgenic mice.
    Zanesi N; Aqeilan R; Drusco A; Kaou M; Sevignani C; Costinean S; Bortesi L; La Rocca G; Koldovsky P; Volinia S; Mancini R; Calin G; Scott CP; Pekarsky Y; Croce CM
    Cancer Res; 2006 Jan; 66(2):915-20. PubMed ID: 16424025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-Cell Analysis and Next-Generation Immuno-Sequencing Show That Multiple Clones Persist in Patients with Chronic Lymphocytic Leukemia.
    Kriangkum J; Motz SN; Mack T; Beiggi S; Baigorri E; Kuppusamy H; Belch AR; Johnston JB; Pilarski LM
    PLoS One; 2015; 10(9):e0137232. PubMed ID: 26353109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence of biased immunoglobulin variable gene usage in highly stable B-cell chronic lymphocytic leukemia.
    Capello D; Guarini A; Berra E; Mauro FR; Rossi D; Ghia E; Cerri M; Logan J; Foà R; Gaidano G
    Leukemia; 2004 Dec; 18(12):1941-7. PubMed ID: 15483675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active Akt signaling triggers CLL toward Richter transformation via overactivation of Notch1.
    Kohlhaas V; Blakemore SJ; Al-Maarri M; Nickel N; Pal M; Roth A; Hövelmeyer N; Schäfer SC; Knittel G; Lohneis P; Nikolic M; Wiederstein JL; Franitza M; Georgomonolis T; Reinart N; Herling M; Herling C; Hartmann EM; Rosenwald A; Klapper W; Büttner R; Moia R; Rossi D; Boldorini R; Gaidano G; Frenzel LP; Reinhardt HC; Brüning JC; Hallek M; Krüger M; Peifer M; Pallasch CP; Wunderlich FT
    Blood; 2021 Feb; 137(5):646-660. PubMed ID: 33538798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reading the B-cell receptor immunome in chronic lymphocytic leukemia: revelations and applications.
    Hengeveld PJ; Levin MD; Kolijn PM; Langerak AW
    Exp Hematol; 2021 Jan; 93():14-24. PubMed ID: 32976948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constitutive activation of distinct BCR-signaling pathways in a subset of CLL patients: a molecular signature of anergy.
    Muzio M; Apollonio B; Scielzo C; Frenquelli M; Vandoni I; Boussiotis V; Caligaris-Cappio F; Ghia P
    Blood; 2008 Jul; 112(1):188-95. PubMed ID: 18292287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity.
    Hervé M; Xu K; Ng YS; Wardemann H; Albesiano E; Messmer BT; Chiorazzi N; Meffre E
    J Clin Invest; 2005 Jun; 115(6):1636-43. PubMed ID: 15902303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.