These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30556958)

  • 1. A computational simulation of cyclic stretch of an individual stem cell using a nonlinear model.
    Rahimpour E; Vahidi B; Mollahoseini Z
    J Tissue Eng Regen Med; 2019 Feb; 13(2):274-282. PubMed ID: 30556958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational simulation of static/cyclic cell stimulations to investigate mechanical modulation of an individual mesenchymal stem cell using confocal microscopy.
    Alihemmati Z; Vahidi B; Haghighipour N; Salehi M
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):494-504. PubMed ID: 27770921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow.
    Stops AJ; Heraty KB; Browne M; O'Brien FJ; McHugh PE
    J Biomech; 2010 Mar; 43(4):618-26. PubMed ID: 19939388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite element prediction of strain on cells in a highly porous collagen-glycosaminoglycan scaffold.
    Stops AJ; McMahon LA; O'Mahoney D; Prendergast PJ; McHugh PE
    J Biomech Eng; 2008 Dec; 130(6):061001. PubMed ID: 19045530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress.
    Liu L; Yuan W; Wang J
    Biomech Model Mechanobiol; 2010 Dec; 9(6):659-70. PubMed ID: 20309603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading.
    Lavagnino M; Arnoczky SP; Kepich E; Caballero O; Haut RC
    Biomech Model Mechanobiol; 2008 Oct; 7(5):405-16. PubMed ID: 17901992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells.
    Ghazanfari S; Tafazzoli-Shadpour M; Shokrgozar MA
    Biochem Biophys Res Commun; 2009 Oct; 388(3):601-5. PubMed ID: 19695226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intranuclear mesoscale viscoelastic changes during osteoblastic differentiation of human mesenchymal stem cells.
    Matsushita K; Nakahara C; Kimura S; Sakamoto N; Ii S; Miyoshi H
    FASEB J; 2021 Dec; 35(12):e22071. PubMed ID: 34820910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cyclic longitudinal mechanical stretch on proliferation of human bone marrow mesenchymal stem cells.
    Song G; Ju Y; Soyama H; Ohashi T; Sato M
    Mol Cell Biomech; 2007 Dec; 4(4):201-10. PubMed ID: 18437917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational simulation of applying mechanical vibration to mesenchymal stem cell for mechanical modulation toward bone tissue engineering.
    Mohseni M; Vahidi B; Azizi H
    Proc Inst Mech Eng H; 2023 Dec; 237(12):1377-1389. PubMed ID: 37982187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite nonlinear hyper-viscoelastic model for soft biological tissues.
    Panda SK; Buist ML
    J Biomech; 2018 Mar; 69():121-128. PubMed ID: 29397112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of uniaxial stretch on morphology and cytoskeleton of human mesenchymal stem cells: static vs. dynamic loading.
    Goli-Malekabadi Z; Tafazzoli-Shadpour M; Rabbani M; Janmaleki M
    Biomed Tech (Berl); 2011 Oct; 56(5):259-65. PubMed ID: 21988158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity.
    Isaksson H; van Donkelaar CC; Huiskes R; Ito K
    J Theor Biol; 2008 May; 252(2):230-46. PubMed ID: 18353374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold: experimental and computational analysis.
    McMahon LA; Reid AJ; Campbell VA; Prendergast PJ
    Ann Biomed Eng; 2008 Feb; 36(2):185-94. PubMed ID: 18080835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational model combined with in vitro experiments to analyse mechanotransduction during mesenchymal stem cell adhesion.
    Milan JL; Lavenus S; Pilet P; Louarn G; Wendling S; Heymann D; Layrolle P; Chabrand P
    Eur Cell Mater; 2013 Jan; 25():97-113. PubMed ID: 23325541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. See-saw rocking: an in vitro model for mechanotransduction research.
    Tucker RP; Henningsson P; Franklin SL; Chen D; Ventikos Y; Bomphrey RJ; Thompson MS
    J R Soc Interface; 2014 Aug; 11(97):20140330. PubMed ID: 24898022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of mechanotransduction reveals how mechanical memory regulates mesenchymal stem cell fate decisions.
    Peng T; Liu L; MacLean AL; Wong CW; Zhao W; Nie Q
    BMC Syst Biol; 2017 May; 11(1):55. PubMed ID: 28511648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells.
    Schätti O; Grad S; Goldhahn J; Salzmann G; Li Z; Alini M; Stoddart MJ
    Eur Cell Mater; 2011 Oct; 22():214-25. PubMed ID: 22048899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid-Structure Interactions Analysis of Shear-Induced Modulation of a Mesenchymal Stem Cell: An Image-Based Study.
    Ghaemi RV; Vahidi B; Sabour MH; Haghighipour N; Alihemmati Z
    Artif Organs; 2016 Mar; 40(3):278-87. PubMed ID: 26333040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro response of the bone marrow-derived mesenchymal stem cells seeded in a type-I collagen-glycosaminoglycan scaffold for skin wound repair under the mechanical loading condition.
    Kobayashi M; Spector M
    Mol Cell Biomech; 2009 Dec; 6(4):217-27. PubMed ID: 19899445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.