BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 30557007)

  • 1. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering.
    Zhou Y; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2019 Feb; 20(2):750-757. PubMed ID: 30557007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-Free Preparation of Cellulose Nanocrystals by TEMPO Oxidation and Subsequent Cavitation.
    Zhou Y; Saito T; Bergström L; Isogai A
    Biomacromolecules; 2018 Feb; 19(2):633-639. PubMed ID: 29283555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Ishii D; Saito T; Isogai A
    Biomacromolecules; 2011 Mar; 12(3):548-50. PubMed ID: 21261299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers.
    Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H
    NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils.
    Hiraoki R; Ono Y; Saito T; Isogai A
    Biomacromolecules; 2015 Feb; 16(2):675-81. PubMed ID: 25584418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose.
    Saito T; Kimura S; Nishiyama Y; Isogai A
    Biomacromolecules; 2007 Aug; 8(8):2485-91. PubMed ID: 17630692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites.
    Kwon G; Lee K; Kim D; Jeon Y; Kim UJ; You J
    J Hazard Mater; 2020 Nov; 398():123100. PubMed ID: 32768841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose Nanofibers Prepared Using the TEMPO/Laccase/O
    Jiang J; Ye W; Liu L; Wang Z; Fan Y; Saito T; Isogai A
    Biomacromolecules; 2017 Jan; 18(1):288-294. PubMed ID: 27995786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R; Saito T; Okita Y; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.
    Soni B; Hassan EB; Schilling MW; Mahmoud B
    Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology of aqueous dispersions of Laponite and TEMPO-oxidized nanofibrillated cellulose.
    Šebenik U; Lapasin R; Krajnc M
    Carbohydr Polym; 2020 Jul; 240():116330. PubMed ID: 32475587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol.
    Jiang F; Hsieh YL
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20075-84. PubMed ID: 25341690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro investigation of the influence of nano-cellulose on starch and milk digestion and mineral adsorption.
    Liu L; Kong F
    Int J Biol Macromol; 2019 Sep; 137():1278-1285. PubMed ID: 31271795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship of Distribution of Carboxy Groups to Molar Mass Distribution of TEMPO-Oxidized Algal, Cotton, and Wood Cellulose Nanofibrils.
    Ono Y; Fukui S; Funahashi R; Isogai A
    Biomacromolecules; 2019 Oct; 20(10):4026-4034. PubMed ID: 31525036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels.
    Wei J; Chen Y; Liu H; Du C; Yu H; Zhou Z
    Carbohydr Polym; 2016 Aug; 147():201-207. PubMed ID: 27178925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs).
    Bai L; Liu Y; Ding A; Ren N; Li G; Liang H
    Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.