These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30557019)

  • 1. Enhanced Sampling of Protein Conformational Transitions via Dynamically Optimized Collective Variables.
    Brotzakis ZF; Parrinello M
    J Chem Theory Comput; 2019 Feb; 15(2):1393-1398. PubMed ID: 30557019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme.
    Mulder FA; Hon B; Mittermaier A; Dahlquist FW; Kay LE
    J Am Chem Soc; 2002 Feb; 124(7):1443-51. PubMed ID: 11841314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme.
    Maeno A; Sindhikara D; Hirata F; Otten R; Dahlquist FW; Yokoyama S; Akasaka K; Mulder FA; Kitahara R
    Biophys J; 2015 Jan; 108(1):133-45. PubMed ID: 25564860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins.
    Harada R; Takano Y; Shigeta Y
    J Chem Phys; 2014 Mar; 140(12):125103. PubMed ID: 24697482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observing lysozyme's closing and opening motions by high-resolution single-molecule enzymology.
    Akhterov MV; Choi Y; Olsen TJ; Sims PC; Iftikhar M; Gul OT; Corso BL; Weiss GA; Collins PG
    ACS Chem Biol; 2015 Jun; 10(6):1495-501. PubMed ID: 25763461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping transiently formed and sparsely populated conformations on a complex energy landscape.
    Wang Y; Papaleo E; Lindorff-Larsen K
    Elife; 2016 Aug; 5():. PubMed ID: 27552057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capturing Invisible Motions in the Transition from Ground to Rare Excited States of T4 Lysozyme L99A.
    Schiffer JM; Feher VA; Malmstrom RD; Sida R; Amaro RE
    Biophys J; 2016 Oct; 111(8):1631-1640. PubMed ID: 27760351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing Multiple Pathways in T4 Lysozyme Substep Conformational Motions by Single-Molecule Enzymology and Modeling.
    Lu M; Lu HP
    J Phys Chem B; 2017 May; 121(19):5017-5024. PubMed ID: 28425708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein hinge bending as seen in molecular dynamics simulations of native and M61 mutant T4 lysozymes.
    Arnold GE; Ornstein RL
    Biopolymers; 1997 Apr; 41(5):533-44. PubMed ID: 9095676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Monte Carlo Methods for Modeling Proteins Including Computation of Absolute Free Energies of Binding.
    Cabeza de Vaca I; Qian Y; Vilseck JZ; Tirado-Rives J; Jorgensen WL
    J Chem Theory Comput; 2018 Jun; 14(6):3279-3288. PubMed ID: 29708338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexibility and ligand exchange in a buried cavity mutant of T4 lysozyme studied by multinuclear NMR.
    Mulder FA; Hon B; Muhandiram DR; Dahlquist FW; Kay LE
    Biochemistry; 2000 Oct; 39(41):12614-22. PubMed ID: 11027141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotamer decomposition and protein dynamics: efficiently analyzing dihedral populations from molecular dynamics.
    Watanabe H; Elstner M; Steinbrecher T
    J Comput Chem; 2013 Jan; 34(3):198-205. PubMed ID: 23007849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating the Calculation of Protein-Ligand Binding Free Energy and Residence Times Using Dynamically Optimized Collective Variables.
    Brotzakis ZF; Limongelli V; Parrinello M
    J Chem Theory Comput; 2019 Jan; 15(1):743-750. PubMed ID: 30537822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiquantum Chemical Exchange Saturation Transfer NMR to Quantify Symmetrical Exchange: Application to Rotational Dynamics of the Guanidinium Group in Arginine Side Chains.
    Karunanithy G; Reinstein J; Hansen DF
    J Phys Chem Lett; 2020 Jul; 11(14):5649-5654. PubMed ID: 32543198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nontargeted Parallel Cascade Selection Molecular Dynamics Using Time-Localized Prediction of Conformational Transitions in Protein Dynamics.
    Harada R; Sladek V; Shigeta Y
    J Chem Theory Comput; 2019 Sep; 15(9):5144-5153. PubMed ID: 31411882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tail lysozyme complex of bacteriophage T4.
    Arisaka F; Kanamaru S; Leiman P; Rossmann MG
    Int J Biochem Cell Biol; 2003 Jan; 35(1):16-21. PubMed ID: 12467643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel Cascade Selection Molecular Dynamics (PaCS-MD) to generate conformational transition pathway.
    Harada R; Kitao A
    J Chem Phys; 2013 Jul; 139(3):035103. PubMed ID: 23883057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparsity-weighted outlier FLOODing (OFLOOD) method: Efficient rare event sampling method using sparsity of distribution.
    Harada R; Nakamura T; Shigeta Y
    J Comput Chem; 2016 Mar; 37(8):724-38. PubMed ID: 26611770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations.
    Bahar I; Erman B; Haliloglu T; Jernigan RL
    Biochemistry; 1997 Nov; 36(44):13512-23. PubMed ID: 9354619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of an engineered T4 lysozyme exclude helix to sheet transition, and provide insights into long distance, intra-protein switchable motion.
    Biggers L; Elhabashy H; Ackad E; Yousef MS
    Protein Sci; 2020 Feb; 29(2):542-554. PubMed ID: 31702853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.