These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 30557351)
1. Robustness of the reproductive number estimates in vector-borne disease systems. Tennant W; Recker M PLoS Negl Trop Dis; 2018 Dec; 12(12):e0006999. PubMed ID: 30557351 [TBL] [Abstract][Full Text] [Related]
2. The Interaction between Vector Life History and Short Vector Life in Vector-Borne Disease Transmission and Control. Brand SP; Rock KS; Keeling MJ PLoS Comput Biol; 2016 Apr; 12(4):e1004837. PubMed ID: 27128163 [TBL] [Abstract][Full Text] [Related]
3. Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing. Keegan L; Dushoff J Bull Math Biol; 2014 May; 76(5):1143-54. PubMed ID: 24756856 [TBL] [Abstract][Full Text] [Related]
4. Global dynamics of a vector-host epidemic model with age of infection. Dang YX; Qiu ZP; Li XZ; Martcheva M Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855 [TBL] [Abstract][Full Text] [Related]
5. An age-structured extension to the vectorial capacity model. Novoseltsev VN; Michalski AI; Novoseltseva JA; Yashin AI; Carey JR; Ellis AM PLoS One; 2012; 7(6):e39479. PubMed ID: 22724022 [TBL] [Abstract][Full Text] [Related]
6. R0 for vector-borne diseases: impact of the assumption for the duration of the extrinsic incubation period. Hartemink N; Cianci D; Reiter P Vector Borne Zoonotic Dis; 2015 Mar; 15(3):215-7. PubMed ID: 25793478 [TBL] [Abstract][Full Text] [Related]
7. Epidemiology and optimal foraging: modelling the ideal free distribution of insect vectors. Kelly DW; Thompson CE Parasitology; 2000 Mar; 120 ( Pt 3)():319-27. PubMed ID: 10759090 [TBL] [Abstract][Full Text] [Related]
8. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
9. Dynamical analysis of a mean-field vector-borne diseases model on complex networks: An edge based compartmental approach. Wang X; Yang J Chaos; 2020 Jan; 30(1):013103. PubMed ID: 32013474 [TBL] [Abstract][Full Text] [Related]
10. The estimation of the basic reproduction number for infectious diseases. Dietz K Stat Methods Med Res; 1993; 2(1):23-41. PubMed ID: 8261248 [TBL] [Abstract][Full Text] [Related]
11. Estimation of basic reproduction numbers: individual heterogeneity and robustness to perturbation of the contact function. Farrington CP; Unkel S; Anaya-Izquierdo K Biostatistics; 2013 Jul; 14(3):528-40. PubMed ID: 23266419 [TBL] [Abstract][Full Text] [Related]
12. From the bench to modeling--R0 at the interface between empirical and theoretical approaches in epidemiology of environmentally transmitted infectious diseases. Ivanek R; Lahodny G Prev Vet Med; 2015 Feb; 118(2-3):196-206. PubMed ID: 25441048 [TBL] [Abstract][Full Text] [Related]
13. Early real-time estimation of the basic reproduction number of emerging or reemerging infectious diseases in a community with heterogeneous contact pattern: Using data from Hong Kong 2009 H1N1 Pandemic Influenza as an illustrative example. Kwok KO; Davoudi B; Riley S; Pourbohloul B PLoS One; 2015; 10(9):e0137959. PubMed ID: 26372219 [TBL] [Abstract][Full Text] [Related]
14. Vector-borne diseases and the basic reproduction number: a case study of African horse sickness. Lord CC; Woolhouse ME; Heesterbeek JA; Mellor PS Med Vet Entomol; 1996 Jan; 10(1):19-28. PubMed ID: 8834738 [TBL] [Abstract][Full Text] [Related]
15. Competitive exclusion in a vector-host epidemic model with distributed delay(†). Cai LM; Martcheva M; Li XZ J Biol Dyn; 2013; 7 Suppl 1(Suppl 1):47-67. PubMed ID: 23421610 [TBL] [Abstract][Full Text] [Related]
16. Transmission parameters of vector-borne infections. Desenclos JC Med Mal Infect; 2011 Nov; 41(11):588-93. PubMed ID: 21993137 [TBL] [Abstract][Full Text] [Related]
17. Calculation of R0 for age-of-infection models. Yang CK; Brauer F Math Biosci Eng; 2008 Jul; 5(3):585-99. PubMed ID: 18616360 [TBL] [Abstract][Full Text] [Related]
18. Estimating the basic reproduction number for the 2015 bubonic plague outbreak in Nyimba district of Eastern Zambia. Sichone J; Simuunza MC; Hang'ombe BM; Kikonko M PLoS Negl Trop Dis; 2020 Nov; 14(11):e0008811. PubMed ID: 33166354 [TBL] [Abstract][Full Text] [Related]
19. Edge removal in random contact networks and the basic reproduction number. Koch D; Illner R; Ma J J Math Biol; 2013 Aug; 67(2):217-38. PubMed ID: 22618359 [TBL] [Abstract][Full Text] [Related]
20. The risk of incomplete personal protection coverage in vector-borne disease. Miller E; Dushoff J; Huppert A J R Soc Interface; 2016 Feb; 13(115):20150666. PubMed ID: 26911486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]