BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30557502)

  • 1. Chemical Redox-Cycling for Improving the Sensitivity of Colorimetric Enzyme-Linked Immunosorbent Assay.
    Chen Z; Wang H; Zhang Z; Chen L
    Anal Chem; 2019 Jan; 91(2):1254-1259. PubMed ID: 30557502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive and selective colorimetric assay of alkaline phosphatase activity with Cu(II)-phenanthroline complex.
    Hu Q; He M; Mei Y; Feng W; Jing S; Kong J; Zhang X
    Talanta; 2017 Jan; 163():146-152. PubMed ID: 27886764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile colorimetric assay of alkaline phosphatase activity using Fe(II)-phenanthroline reporter.
    Hu Q; Zhou B; Dang P; Li L; Kong J; Zhang X
    Anal Chim Acta; 2017 Jan; 950():170-177. PubMed ID: 27916122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical-chemical redox cycling for improving the sensitivity of the fluorescent assay: A proof-of-concept towards DNA methylation detection.
    Zhang H; Wu S; Xiao HJ; Wang HB; Fang L; Cao JT
    Talanta; 2024 Feb; 268(Pt 1):125363. PubMed ID: 37906997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling.
    Xia N; Zhang Y; Wei X; Huang Y; Liu L
    Anal Chim Acta; 2015 Jun; 878():95-101. PubMed ID: 26002330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of phosphatase- and redox cycling-based immunosensors and its application to ultrasensitive detection of troponin I.
    Akanda MR; Aziz MA; Jo K; Tamilavan V; Hyun MH; Kim S; Yang H
    Anal Chem; 2011 May; 83(10):3926-33. PubMed ID: 21486093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ALP-assisted chemical redox cycling signal amplification for ultrasensitive fluorescence detection of DNA methylation.
    Zhang H; Wu S; Xing Z; Wang HB
    Analyst; 2023 Nov; 148(22):5753-5761. PubMed ID: 37842979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of dehydroascorbic acid at low pH.
    Wechtersbach L; Cigić B
    J Biochem Biophys Methods; 2007 Aug; 70(5):767-72. PubMed ID: 17544513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Polydopamine Framework: An Innovative Signal-Generation Tag for Colorimetric Immunoassay.
    Ren R; Cai G; Yu Z; Zeng Y; Tang D
    Anal Chem; 2018 Sep; 90(18):11099-11105. PubMed ID: 30137976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MnO
    Tian F; Zhou J; Ma J; Liu S; Jiao B; He Y
    Mikrochim Acta; 2019 Jun; 186(7):408. PubMed ID: 31183571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing background absorbance via a double-lock strategy for detection of alkaline phosphatase and α-fetoprotein.
    Hu X; Wei Z; Tang M; Long Y; Zheng H
    Mikrochim Acta; 2020 Aug; 187(9):489. PubMed ID: 32766932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous conversion of L-dehydroascorbic acid to L-ascorbic acid and L-erythroascorbic acid.
    Jung CH; Wells WW
    Arch Biochem Biophys; 1998 Jul; 355(1):9-14. PubMed ID: 9647661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iodine-Mediated Etching of Gold Nanorods for Plasmonic ELISA Based on Colorimetric Detection of Alkaline Phosphatase.
    Zhang Z; Chen Z; Wang S; Cheng F; Chen L
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27639-45. PubMed ID: 26619266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence Immunoassay System via Enzyme-Enabled in Situ Synthesis of Fluorescent Silicon Nanoparticles.
    Sun J; Hu T; Chen C; Zhao D; Yang F; Yang X
    Anal Chem; 2016 Oct; 88(19):9789-9795. PubMed ID: 27657654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive detection of respiratory syncytial virus based on a dual signal amplified plasmonic enzyme-linked immunosorbent assay.
    Zhan L; Wu WB; Yang L; Huang CZ
    Anal Chim Acta; 2017 Apr; 962():73-79. PubMed ID: 28231882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-catalyzed Ag Growth on Au Nanoparticle-assembled Structure for Highly Sensitive Colorimetric Immunoassay.
    Pham XH; Hahm E; Kim TH; Kim HM; Lee SH; Lee YS; Jeong DH; Jun BH
    Sci Rep; 2018 Apr; 8(1):6290. PubMed ID: 29674713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A carbon dot-based ratiometric fluorometric and colorimetric method for determination of ascorbic acid and of the activity of ascorbic acid oxidase.
    Wang Y; Yang Y; Liu W; Ding F; Zou P; Wang X; Zhao Q; Rao H
    Mikrochim Acta; 2019 Mar; 186(4):246. PubMed ID: 30879229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-to-ligand charge-transfer: Applications to visual detection of β-galactosidase activity and sandwich immunoassay.
    Hu Q; Ma K; Mei Y; He M; Kong J; Zhang X
    Talanta; 2017 May; 167():253-259. PubMed ID: 28340718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of ascorbic acid and dehydroascorbic acid in biological samples by high-performance liquid chromatography using subtraction methods: reliable reduction with tris[2-carboxyethyl]phosphine hydrochloride.
    Lykkesfeldt J
    Anal Biochem; 2000 Jun; 282(1):89-93. PubMed ID: 10860503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroquinone diphosphate as a phosphatase substrate in enzymatic amplification combined with electrochemical-chemical-chemical redox cycling for the detection of E. coli O157:H7.
    Akanda MR; Tamilavan V; Park S; Jo K; Hyun MH; Yang H
    Anal Chem; 2013 Feb; 85(3):1631-6. PubMed ID: 23327094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.