BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30557732)

  • 1. Biodegradation of acenaphthene by Sphingobacterium sp. strain RTSB involving trans-3-carboxy-2-hydroxybenzylidenepyruvic acid as a metabolite.
    Mallick S
    Chemosphere; 2019 Mar; 219():748-755. PubMed ID: 30557732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the metabolic pathway involved in assimilation of acenaphthene in Acinetobacter sp. strain AGAT-W.
    Ghosal D; Dutta A; Chakraborty J; Basu S; Dutta TK
    Res Microbiol; 2013; 164(2):155-63. PubMed ID: 23178176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of phenanthrene via meta-cleavage of 2-hydroxy-1-naphthoic acid by Ochrobactrum sp. strain PWTJD.
    Ghosal D; Chakraborty J; Khara P; Dutta TK
    FEMS Microbiol Lett; 2010 Dec; 313(2):103-10. PubMed ID: 20964703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of 13C nuclear magnetic resonance to assess fossil fuel biodegradation: fate of [1-13C]acenaphthene in creosote polycyclic aromatic compound mixtures degraded by bacteria.
    Selifonov SA; Chapman PJ; Akkerman SB; Gurst JE; Bortiatynski JM; Nanny MA; Hatcher PG
    Appl Environ Microbiol; 1998 Apr; 64(4):1447-53. PubMed ID: 9546181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel intermediates of acenaphthylene degradation by Rhizobium sp. strain CU-A1: evidence for naphthalene-1,8-dicarboxylic acid metabolism.
    Poonthrigpun S; Pattaragulwanit K; Paengthai S; Kriangkripipat T; Juntongjin K; Thaniyavarn S; Petsom A; Pinphanichakarn P
    Appl Environ Microbiol; 2006 Sep; 72(9):6034-9. PubMed ID: 16957226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2'-hydroxyphenyl)-pent-4-enoic acid.
    Mallick S; Chatterjee S; Dutta TK
    Microbiology (Reading); 2007 Jul; 153(Pt 7):2104-2115. PubMed ID: 17600055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene.
    Schocken MJ; Gibson DT
    Appl Environ Microbiol; 1984 Jul; 48(1):10-6. PubMed ID: 6089663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial Degradation Mechanism and Pathway of the Novel Insecticide Paichongding by a Newly Isolated Sphingobacterium sp. P1-3 from Soil.
    Cai Z; Zhang W; Li S; Ma J; Wang J; Zhao X
    J Agric Food Chem; 2015 Apr; 63(15):3823-9. PubMed ID: 25815695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of acenaphthylene via 1,2-dihydroxynaphthalene and catechol by Stenotrophomonas sp. RMSK.
    Nayak AS; Veeranagouda Y; Lee K; Karegoudar TB
    Biodegradation; 2009 Nov; 20(6):837-43. PubMed ID: 19543983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A catabolic pathway for the degradation of chrysene by Pseudoxanthomonas sp. PNK-04.
    Nayak AS; Sanjeev Kumar S; Santosh Kumar M; Anjaneya O; Karegoudar TB
    FEMS Microbiol Lett; 2011 Jul; 320(2):128-34. PubMed ID: 21545490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89.
    Phale PS; Mahajan MC; Vaidyanathan CS
    Arch Microbiol; 1995 Jan; 163(1):42-7. PubMed ID: 7710320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems.
    Mihelcic JR; Luthy RG
    Appl Environ Microbiol; 1988 May; 54(5):1188-98. PubMed ID: 3389812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a strain of Sphingobacterium sp. and its degradation to herbicide mefenacet.
    Ye YF; Min H; Du YF
    J Environ Sci (China); 2004; 16(2):343-7. PubMed ID: 15137667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Degradation pathway of 17alpha-ethynylestradiol by Sphingobacterium sp. JCR5].
    Ren HY; Ji SL; Cui CW; Wang D
    Huan Jing Ke Xue; 2006 Sep; 27(9):1835-40. PubMed ID: 17117642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of 2-hydroxy-1-naphthoic acid and naphthalene via gentisic acid by distinctly different sets of enzymes in Burkholderia sp. strain BC1.
    Chowdhury PP; Sarkar J; Basu S; Dutta TK
    Microbiology (Reading); 2014 May; 160(Pt 5):892-902. PubMed ID: 24554759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of organophosphorus pesticide chlorpyrifos by Sphingobacterium sp. C1B, a psychrotolerant bacterium isolated from apple orchard in Himachal Pradesh of India.
    Verma S; Singh D; Chatterjee S
    Extremophiles; 2020 Nov; 24(6):897-908. PubMed ID: 32968825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation characteristics and metabolic pathway of 17alpha-ethynylestradiol by Sphingobacterium sp. JCR5.
    Haiyan R; Shulan J; ud din Ahmad N; Dao W; Chengwu C
    Chemosphere; 2007 Jan; 66(2):340-6. PubMed ID: 16766017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway.
    Annweiler E; Michaelis W; Meckenstock RU
    Appl Environ Microbiol; 2002 Feb; 68(2):852-8. PubMed ID: 11823228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete degradation of butyl benzyl phthalate by a defined bacterial consortium: role of individual isolates in the assimilation pathway.
    Chatterjee S; Dutta TK
    Chemosphere; 2008 Jan; 70(5):933-41. PubMed ID: 17669462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems.
    Mihelcic JR; Luthy RG
    Appl Environ Microbiol; 1988 May; 54(5):1182-7. PubMed ID: 3389811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.