BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30557755)

  • 1. Predicting cadmium toxicity with the kinetics of phytochelatin induction in a marine diatom.
    Wu Y; Yuan Y; Yuan H; Zhang W; Zhang L
    Aquat Toxicol; 2019 Feb; 207():101-109. PubMed ID: 30557755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Relationship between Cadmium Uptake and the Kinetics of Phytochelatin Induction by Cadmium in a Marine Diatom.
    Wu Y; Guo Z; Zhang W; Tan Q; Zhang L; Ge X; Chen M
    Sci Rep; 2016 Oct; 6():35935. PubMed ID: 27779209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: exposure to cadmium.
    Wang MJ; Wang WX
    Aquat Toxicol; 2011 Jan; 101(2):377-86. PubMed ID: 21216348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction.
    Wang MJ; Wang WX
    Aquat Toxicol; 2009 Nov; 95(2):99-107. PubMed ID: 19748136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-dependent sensitivity of a marine diatom to cadmium stress explained by subcelluar distribution and thiol synthesis.
    Wang MJ; Wang WX
    Environ Sci Technol; 2008 Nov; 42(22):8603-8. PubMed ID: 19068855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The response and detoxification strategies of three freshwater phytoplankton species, Aphanizomenon flos-aquae, Pediastrum simplex, and Synedra acus, to cadmium.
    Ran X; Yue H; Fu X; Kang Y; Xu S; Yang Y; Xu J; Shi J; Wu Z
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19596-606. PubMed ID: 26272291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Recovery from cadmium exposure.
    Wang MJ; Wang WX
    Aquat Toxicol; 2011 Jan; 101(2):387-95. PubMed ID: 21216349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium toxicity to two marine phytoplankton under different nutrient conditions.
    Miao AJ; Wang WX
    Aquat Toxicol; 2006 Jun; 78(2):114-26. PubMed ID: 16616380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular speciation and transformation of inorganic mercury in marine phytoplankton.
    Wu Y; Wang WX
    Aquat Toxicol; 2014 Mar; 148():122-9. PubMed ID: 24473163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salinity-dependent nanostructures and composition of cell surface and its relation to Cd toxicity in an estuarine diatom.
    Ma J; Zhou B; Duan D; Pan K
    Chemosphere; 2019 Jan; 215():807-814. PubMed ID: 30359950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium toxicity on the freshwater microalga Chlamydomonas moewusii Gerloff: Biosynthesis of thiol compounds.
    Suárez C; Torres E; Pérez-Rama M; Herrero C; Abalde J
    Environ Toxicol Chem; 2010 Sep; 29(9):2009-15. PubMed ID: 20821658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium toxicity in a marine diatom as predicted by the cellular metal sensitive fraction.
    Wang M; Wang WX
    Environ Sci Technol; 2008 Feb; 42(3):940-6. PubMed ID: 18323126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of silicon in combating cadmium challenge in the Marine diatom Phaeodactylum tricornutum.
    Ma J; Zhou B; Tan Q; Zhang L; Pan K
    J Hazard Mater; 2020 May; 389():121903. PubMed ID: 31879097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure.
    Morelli E; Ferrara R; Bellini B; Dini F; Di Giuseppe G; Fantozzi L
    Sci Total Environ; 2009 Dec; 408(2):286-93. PubMed ID: 19846208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytochelatin production by marine phytoplankton at low free metal ion concentrations: laboratory studies and field data from Massachusetts Bay.
    Ahner BA; Price NM; Morel FM
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8433-6. PubMed ID: 8078899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity effects of zinc on two marine diatoms, under varying macronutrient environment.
    Anu PR; Bijoy Nandan S; Jayachandran PR; Don Xavier ND; Midhun AM; Mohan D
    Mar Environ Res; 2018 Nov; 142():275-285. PubMed ID: 30389236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules.
    Lavoie M; Le Faucheur S; Fortin C; Campbell PG
    Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure.
    Wu Y; Wang WX
    J Hazard Mater; 2012 May; 217-218():271-8. PubMed ID: 22476094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kützing) W. Smith.
    Branco D; Lima A; Almeida SF; Figueira E
    Aquat Toxicol; 2010 Aug; 99(2):109-17. PubMed ID: 20537735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phytochelatin-based bioassay in marine diatoms useful for the assessment of bioavailability of heavy metals released by polluted sediments.
    Morelli E; Marangi ML; Fantozzi L
    Environ Int; 2009 Apr; 35(3):532-8. PubMed ID: 18973945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.