These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. DNA damage and telomere length shortening in the peripheral blood leukocytes of 20 years SM-exposed veterans. Behboudi H; Noureini SK; Ghazanfari T; Ardestani SK Int Immunopharmacol; 2018 Aug; 61():37-44. PubMed ID: 29803135 [TBL] [Abstract][Full Text] [Related]
23. Significant role for p16INK4a in p53-independent telomere-directed senescence. Jacobs JJ; de Lange T Curr Biol; 2004 Dec; 14(24):2302-8. PubMed ID: 15620660 [TBL] [Abstract][Full Text] [Related]
26. Cumulative lifetime stress exposure and leukocyte telomere length attrition: The unique role of stressor duration and exposure timing. Mayer SE; Prather AA; Puterman E; Lin J; Arenander J; Coccia M; Shields GS; Slavich GM; Epel ES Psychoneuroendocrinology; 2019 Jun; 104():210-218. PubMed ID: 30884304 [TBL] [Abstract][Full Text] [Related]
27. Senescence delay of human diploid fibroblast induced by anti-sense p16INK4a expression. Duan J; Zhang Z; Tong T J Biol Chem; 2001 Dec; 276(51):48325-31. PubMed ID: 11606567 [TBL] [Abstract][Full Text] [Related]
28. p16(INK4A) mediates age-related changes in mesenchymal stem cells derived from human dental pulp through the DNA damage and stress response. Feng X; Xing J; Feng G; Huang D; Lu X; Liu S; Tan W; Li L; Gu Z Mech Ageing Dev; 2014; 141-142():46-55. PubMed ID: 25304494 [TBL] [Abstract][Full Text] [Related]
29. Telomere-based proliferative lifespan barriers in Werner-syndrome fibroblasts involve both p53-dependent and p53-independent mechanisms. Davis T; Singhrao SK; Wyllie FS; Haughton MF; Smith PJ; Wiltshire M; Wynford-Thomas D; Jones CJ; Faragher RG; Kipling D J Cell Sci; 2003 Apr; 116(Pt 7):1349-57. PubMed ID: 12615976 [TBL] [Abstract][Full Text] [Related]
30. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Bernadotte A; Mikhelson VM; Spivak IM Aging (Albany NY); 2016 Jan; 8(1):3-11. PubMed ID: 26805432 [TBL] [Abstract][Full Text] [Related]
31. The existence of senescent cells in conjunctival epithelium from elderly individuals. Tomioka Y; Kitazawa K; Numa K; Hughes JB; Yokoi N; Sotozono C Jpn J Ophthalmol; 2024 Mar; 68(2):157-165. PubMed ID: 38311689 [TBL] [Abstract][Full Text] [Related]
32. Emotions and family interactions in childhood: Associations with leukocyte telomere length emotions, family interactions, and telomere length. Robles TF; Carroll JE; Bai S; Reynolds BM; Esquivel S; Repetti RL Psychoneuroendocrinology; 2016 Jan; 63():343-50. PubMed ID: 26551267 [TBL] [Abstract][Full Text] [Related]
33. Stress resilience: Narrative identity may buffer the longitudinal effects of chronic caregiving stress on mental health and telomere shortening. Mason AE; Adler JM; Puterman E; Lakmazaheri A; Brucker M; Aschbacher K; Epel ES Brain Behav Immun; 2019 Mar; 77():101-109. PubMed ID: 30579939 [TBL] [Abstract][Full Text] [Related]
34. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Herbig U; Jobling WA; Chen BP; Chen DJ; Sedivy JM Mol Cell; 2004 May; 14(4):501-13. PubMed ID: 15149599 [TBL] [Abstract][Full Text] [Related]
35. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Hall BM; Balan V; Gleiberman AS; Strom E; Krasnov P; Virtuoso LP; Rydkina E; Vujcic S; Balan K; Gitlin I; Leonova K; Polinsky A; Chernova OB; Gudkov AV Aging (Albany NY); 2016 Jul; 8(7):1294-315. PubMed ID: 27391570 [TBL] [Abstract][Full Text] [Related]
36. Astrocyte senescence as a component of Alzheimer's disease. Bhat R; Crowe EP; Bitto A; Moh M; Katsetos CD; Garcia FU; Johnson FB; Trojanowski JQ; Sell C; Torres C PLoS One; 2012; 7(9):e45069. PubMed ID: 22984612 [TBL] [Abstract][Full Text] [Related]
37. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Hall BM; Balan V; Gleiberman AS; Strom E; Krasnov P; Virtuoso LP; Rydkina E; Vujcic S; Balan K; Gitlin II; Leonova KI; Consiglio CR; Gollnick SO; Chernova OB; Gudkov AV Aging (Albany NY); 2017 Aug; 9(8):1867-1884. PubMed ID: 28768895 [TBL] [Abstract][Full Text] [Related]
38. Murine mesenchymal cells that express elevated levels of the CDK inhibitor p16(Ink4a) in vivo are not necessarily senescent. Frescas D; Hall BM; Strom E; Virtuoso LP; Gupta M; Gleiberman AS; Rydkina E; Balan V; Vujcic S; Chernova OB; Gudkov AV Cell Cycle; 2017 Aug; 16(16):1526-1533. PubMed ID: 28650766 [TBL] [Abstract][Full Text] [Related]
39. p16(INK4a) protects against dysfunctional telomere-induced ATR-dependent DNA damage responses. Wang Y; Sharpless N; Chang S J Clin Invest; 2013 Oct; 123(10):4489-501. PubMed ID: 24091330 [TBL] [Abstract][Full Text] [Related]
40. Up and downregulation of p16(Ink4a) expression in BRAF-mutated polyps/adenomas indicates a senescence barrier in the serrated route to colon cancer. Kriegl L; Neumann J; Vieth M; Greten FR; Reu S; Jung A; Kirchner T Mod Pathol; 2011 Jul; 24(7):1015-22. PubMed ID: 21423154 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]