BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30557844)

  • 1. Achieving highly sensitive detection of Cu
    Yang J; Chai J; Yang B; Liu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():272-279. PubMed ID: 30557844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabricating a fluorescence resonance energy transfer system with AIE molecular for sensitive detection of Cu(II) ions.
    Guan P; Yang B; Liu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117604. PubMed ID: 31605938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift.
    Şen E; Meral K; Atılgan S
    Chemistry; 2016 Jan; 22(2):736-45. PubMed ID: 26617068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence resonance energy transfer (FRET) based nanoparticles composed of AIE luminogens and NIR dyes with enhanced three-photon near-infrared emission for in vivo brain angiography.
    Liu W; Wang Y; Han X; Lu P; Zhu L; Sun C; Qian J; He S
    Nanoscale; 2018 May; 10(21):10025-10032. PubMed ID: 29774924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET processes of bi-fluorophoric sensor material containing tetraphenylethylene donor and optical-switchable merocyanine acceptor for lead ion (Pb
    Ho FC; Huang KH; Cheng HW; Huang YJ; Nhien PQ; Wu CH; Wu JI; Chen SY; Lin HC
    Dyes Pigm; 2021 May; 189():. PubMed ID: 33746312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probe Intracellular Trafficking of a Polymeric DNA Delivery Vehicle by Functionalization with an Aggregation-Induced Emissive Tetraphenylethene Derivative.
    Han X; Chen Q; Lu H; Ma J; Gao H
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28494-501. PubMed ID: 26634294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Förster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photo-Thermo-Electric Conversion.
    Fu K; Zeng X; Zhao X; Wu Y; Li M; Li XS; Pan C; Chen Z; Yu ZQ
    Small; 2021 Oct; 17(39):e2103172. PubMed ID: 34310041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient Artificial Light-Harvesting Systems Constructed in Aqueous Solution Based on Supramolecular Self-Assembly.
    Guo S; Song Y; He Y; Hu XY; Wang L
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3163-3167. PubMed ID: 29383817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable Aggregation-Induced Emission and Förster Resonance Energy Transfer Behaviors of Bistable [
    Trung NT; Nhien PQ; Kim Cuc TT; Wu CH; Buu Hue BT; Wu JI; Li YK; Lin HC
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15353-15366. PubMed ID: 36926804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of an Artificial Light-Harvesting System with Efficient Photocatalytic Activity in an Aqueous Solution Based on a FRET-Featuring Metallacage.
    Jia PP; Hu YX; Peng ZY; Song B; Zeng ZY; Ling QH; Zhao X; Xu L; Yang HB
    Inorg Chem; 2023 Feb; 62(5):1950-1957. PubMed ID: 35939800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AIE active turn-off fluorescent probe for the detection of Cu
    Pannipara M; Al-Sehemi AG; Kalam A; Asiri AM; Arshad MN
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():84-89. PubMed ID: 28437689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AIE active multianalyte fluorescent probe for the detection of Cu
    Pannipara M; Al-Sehemi AG; Irfan A; Assiri M; Kalam A; Al-Ammari YS
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():54-60. PubMed ID: 29730554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel upconversion, fluorescence resonance energy transfer biosensor (FRET) for sensitive detection of lead ions in human serum.
    Xu S; Xu S; Zhu Y; Xu W; Zhou P; Zhou C; Dong B; Song H
    Nanoscale; 2014 Nov; 6(21):12573-9. PubMed ID: 25184968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing sugar-lectin recognitions in the near-infrared region using glyco-diketopyrrolopyrrole with aggregation-induced-emission.
    Hang Y; He XP; Yang L; Hua J
    Biosens Bioelectron; 2015 Mar; 65():420-6. PubMed ID: 25461189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diphenylacrylonitrile-connected BODIPY dyes: fluorescence enhancement based on dark and AIE resonance energy transfer.
    Lin L; Lin X; Guo H; Yang F
    Org Biomol Chem; 2017 Jul; 15(28):6006-6013. PubMed ID: 28678301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-potential electrochemiluminescent film constructed from single AIE luminogens for the sensitive detection of malachite green.
    Li Z; Zhou Y; Cui Y; Liang G
    Nanoscale; 2022 May; 14(20):7711-7719. PubMed ID: 35579044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red-Green-Blue Trichromophoric Nanoparticles with Dual Fluorescence Resonance Energy Transfer: Highly Sensitive Fluorogenic Response Toward Polyanions.
    Xu J; Takai A; Takeuchi M
    Chemistry; 2016 Sep; 22(37):13014-8. PubMed ID: 27487175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3A novel carbazole-based AIE-active fluorescent sensor for fast and ultrasensitive detection of Cu
    Zhang Y; Li Y; Sun M; Lu L; Zhu B; Ma J
    Photochem Photobiol Sci; 2023 Aug; 22(8):1961-1975. PubMed ID: 37131094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile "click" reaction to fabricate a FRET-based ratiometric fluorescent Cu
    Hu Z; Hu J; Cui Y; Wang G; Zhang X; Uvdal K; Gao HW
    J Mater Chem B; 2014 Jul; 2(28):4467-4472. PubMed ID: 32261548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.