These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30557848)

  • 1. O
    Kacienė G; Miškelytė D; AbdElgawad H; Beemster G; Asard H; Dikšaitytė A; Žaltauskaitė J; Sujetovienė G; Januškaitienė I; Juknys R
    Plant Physiol Biochem; 2019 Feb; 135():194-205. PubMed ID: 30557848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of water stress on the agressiveness of oilsseed rape (Brassica napus L.) and two mustards (Sinapis alba L. and S. arvensis L.).
    Maataoui A; Talouizte A; Benbella M; Bouhache M
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):433-40. PubMed ID: 15149141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of plant density on competitiveness of Brassica napus, Sinapis alba and S. arvensis under water stress conditions.
    Maataoui A; Talouizte A; Benbella M; Bouhache M
    Commun Agric Appl Biol Sci; 2005; 70(1):61-6. PubMed ID: 16363360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitiveness and dry matter allocation of oilseed rape (Brassica napus L.) and two mustards (Sinapis alba L. and S. arvensis L.) under water stress conditions.
    Maataoui A; Talouizte A; Benbella M; Bouhache M
    Commun Agric Appl Biol Sci; 2005; 70(1):67-74. PubMed ID: 16363361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First Report of Branched Broomrape (Orobanche ramosa) on Oilseed Rape (Brassica napus), Wild Mustard (Sinapis arvensis), and Wild Vetch (Vicia spp.) in Northern Greece.
    Tsialtas JT; Eleftherohorinos IG
    Plant Dis; 2011 Oct; 95(10):1322. PubMed ID: 30731672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3.
    Himanen SJ; Nissinen A; Auriola S; Poppy GM; Stewart CN; Holopainen JK; Nerg AM
    Planta; 2008 Jan; 227(2):427-37. PubMed ID: 17922289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of elevated CO2 concentration and temperature on the mixed-culture grown wild mustard (Sinapis arvensis L.) response to auxin herbicide.
    Žaltauskaitė J; Dikšaitytė A; Miškelytė D; Kacienė G; Sujetovienė G; Januškaitienė I; Juknys R
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):13711-13725. PubMed ID: 36136189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive effects and competitive shift between Triticum aestivum L. (wheat) and Chenopodium album L. (fat-hen) under ambient and elevated ozone.
    Ghosh A; Pandey B; Agrawal M; Agrawal SB
    Environ Pollut; 2020 Oct; 265(Pt B):114764. PubMed ID: 32512473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer of Dicamba Tolerance from Sinapis arvensis to Brassica napus via Embryo Rescue and Recurrent Backcross Breeding.
    Jugulam M; Ziauddin A; So KK; Chen S; Hall JC
    PLoS One; 2015; 10(11):e0141418. PubMed ID: 26536372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change impacts on human health over Europe through its effect on air quality.
    Doherty RM; Heal MR; O'Connor FM
    Environ Health; 2017 Dec; 16(Suppl 1):118. PubMed ID: 29219103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apoplastic antioxidant enzyme responses to chronic free-air ozone exposure in two different ozone-sensitive wheat cultivars.
    Wang J; Zeng Q; Zhu J; Chen C; Liu G; Tang H
    Plant Physiol Biochem; 2014 Sep; 82():183-93. PubMed ID: 24973575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth.
    Liu Y; Stewart CN; Li J; Huang H; Zhang X
    Transgenic Res; 2015 Dec; 24(6):1043-53. PubMed ID: 26338267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone.
    Isebrand JG; McDonald EP; Kruger E; Hendrey G; Percy K; Pregitzer K; Sober J; Karnosky DF
    Environ Pollut; 2001; 115(3):359-71. PubMed ID: 11789918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent elevation of CO2, O3 and temperature severely affects oil quality and quantity in rapeseed.
    Namazkar S; Stockmarr A; Frenck G; Egsgaard H; Terkelsen T; Mikkelsen T; Ingvordsen CH; Jørgensen RB
    J Exp Bot; 2016 Jul; 67(14):4117-25. PubMed ID: 27222513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic seed treatment improved cadmium (Cd) tolerance in Brassica napus L.
    Rao G; Huang S; Ashraf U; Mo Z; Duan M; Pan S; Tang X
    Ecotoxicol Environ Saf; 2019 Dec; 185():109659. PubMed ID: 31541946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Greenhouse effect: impacts of ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) on vegetation.
    Krupa SV; Kickert RN
    Environ Pollut; 1989; 61(4):263-393. PubMed ID: 15092357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruce and European beech.
    Liu X; Kozovits AR; Grams TE; Blaschke H; Rennenberg H; Matyssek R
    Tree Physiol; 2004 Sep; 24(9):1045-55. PubMed ID: 15234902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves.
    Yan H; Filardo F; Hu X; Zhao X; Fu D
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3758-69. PubMed ID: 26498815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Health burdens of surface ozone in the UK for a range of future scenarios.
    Heal MR; Heaviside C; Doherty RM; Vieno M; Stevenson DS; Vardoulakis S
    Environ Int; 2013 Nov; 61():36-44. PubMed ID: 24096040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms underlying the amelioration of O3-induced damage by elevated atmospheric concentrations of CO2.
    Cardoso-Vilhena J; Balaguer L; Eamus D; Ollerenshaw J; Barnes J
    J Exp Bot; 2004 Mar; 55(397):771-81. PubMed ID: 14966219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.