These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1294 related articles for article (PubMed ID: 30557856)
1. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856 [TBL] [Abstract][Full Text] [Related]
2. HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation. Liu X; Song S; Huang J; Fu H; Ning X; He Y; Zhang Z J Mater Chem B; 2020 Jul; 8(28):6115-6127. PubMed ID: 32558871 [TBL] [Abstract][Full Text] [Related]
3. Enhanced proliferation and angiogenic phenotype of endothelial cells via negatively-charged alginate and chondroitin sulfate microsphere hydrogels. Xiong X; Xiao W; Zhou S; Cui R; Xu HHK; Qu S Biomed Mater; 2021 Feb; 16(2):025012. PubMed ID: 33412523 [TBL] [Abstract][Full Text] [Related]
4. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Fan M; Ma Y; Tan H; Jia Y; Zou S; Guo S; Zhao M; Huang H; Ling Z; Chen Y; Hu X Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():67-74. PubMed ID: 27987759 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Song K; Li L; Li W; Zhu Y; Jiao Z; Lim M; Fang M; Shi F; Wang L; Liu T Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():384-92. PubMed ID: 26117769 [TBL] [Abstract][Full Text] [Related]
6. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Li T; Song X; Weng C; Wang X; Gu L; Gong X; Wei Q; Duan X; Yang L; Chen C Int J Biol Macromol; 2019 Sep; 137():382-391. PubMed ID: 31271796 [TBL] [Abstract][Full Text] [Related]
7. 3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Olate-Moya F; Rubí-Sans G; Engel E; Mateos-Timoneda MÁ; Palza H Biomacromolecules; 2024 Jun; 25(6):3312-3324. PubMed ID: 38728671 [TBL] [Abstract][Full Text] [Related]
8. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143 [TBL] [Abstract][Full Text] [Related]
9. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous release of melatonin and methylprednisolone from an injectable in situ self-crosslinked hydrogel/microparticle system for cartilage tissue engineering. Naghizadeh Z; Karkhaneh A; Khojasteh A J Biomed Mater Res A; 2018 Jul; 106(7):1932-1940. PubMed ID: 29569835 [TBL] [Abstract][Full Text] [Related]
11. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757 [TBL] [Abstract][Full Text] [Related]
12. A thermosensitive RGD-modified hydroxybutyl chitosan hydrogel as a 3D scaffold for BMSCs culture on keloid treatment. Qu C; Bao Z; Zhang X; Wang Z; Ren J; Zhou Z; Tian M; Cheng X; Chen X; Feng C Int J Biol Macromol; 2019 Mar; 125():78-86. PubMed ID: 30529347 [TBL] [Abstract][Full Text] [Related]
13. Development and Evaluation of Gellan Gum/Silk Fibroin/Chondroitin Sulfate Ternary Injectable Hydrogel for Cartilage Tissue Engineering. Lee S; Choi J; Youn J; Lee Y; Kim W; Choe S; Song J; Reis RL; Khang G Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439850 [TBL] [Abstract][Full Text] [Related]
14. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel. Gao G; Hubbell K; Schilling AF; Dai G; Cui X Methods Mol Biol; 2017; 1612():391-398. PubMed ID: 28634958 [TBL] [Abstract][Full Text] [Related]
15. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
16. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
18. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
19. Bioprinted Scaffolds for Cartilage Tissue Engineering. Kang HW; Yoo JJ; Atala A Methods Mol Biol; 2015; 1340():161-9. PubMed ID: 26445837 [TBL] [Abstract][Full Text] [Related]
20. Bioprinting Stem Cells in Hydrogel for In Situ Surgical Application: A Case for Articular Cartilage. Duchi S; Onofrillo C; O'Connell C; Wallace GG; Choong P; Di Bella C Methods Mol Biol; 2020; 2140():145-157. PubMed ID: 32207110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]