BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30558278)

  • 1. Artificial Intelligence-Based Grading Quality of Bovine Blastocyst Digital Images: Direct Capture with Juxtaposed Lenses of Smartphone Camera and Stereomicroscope Ocular Lens.
    Gouveia Nogueira MF; Bertogna Guilherme V; Pronunciate M; Dos Santos PH; Lima Bezerra da Silva D; Rocha JC
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Method Based on Artificial Intelligence To Fully Automatize The Evaluation of Bovine Blastocyst Images.
    Rocha JC; Passalia FJ; Matos FD; Takahashi MB; Ciniciato DS; Maserati MP; Alves MF; de Almeida TG; Cardoso BL; Basso AC; Nogueira MFG
    Sci Rep; 2017 Aug; 7(1):7659. PubMed ID: 28794478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatized image processing of bovine blastocysts produced in vitro for quantitative variable determination.
    Rocha JC; Passalia FJ; Matos FD; Takahashi MB; Maserati MP; Alves MF; de Almeida TG; Cardoso BL; Basso AC; Nogueira MFG
    Sci Data; 2017 Dec; 4():170192. PubMed ID: 29257125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos.
    Loewke K; Cho JH; Brumar CD; Maeder-York P; Barash O; Malmsten JE; Zaninovic N; Sakkas D; Miller KA; Levy M; VerMilyea MD
    Fertil Steril; 2022 Mar; 117(3):528-535. PubMed ID: 34998577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for semi-automatic grading of human blastocyst microscope images.
    Santos Filho E; Noble JA; Poli M; Griffiths T; Emerson G; Wells D
    Hum Reprod; 2012 Sep; 27(9):2641-8. PubMed ID: 22736327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence techniques for embryo and oocyte classification.
    Manna C; Nanni L; Lumini A; Pappalardo S
    Reprod Biomed Online; 2013 Jan; 26(1):42-9. PubMed ID: 23177416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method using artificial neural networks to morphologically assess mouse blastocyst quality.
    Matos FD; Rocha JC; Nogueira MF
    J Anim Sci Technol; 2014; 56():15. PubMed ID: 26290704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smartphone adapters for digital photomicrography.
    Roy S; Pantanowitz L; Amin M; Seethala RR; Ishtiaque A; Yousem SA; Parwani AV; Cucoranu I; Hartman DJ
    J Pathol Inform; 2014; 5(1):24. PubMed ID: 25191623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pilot study for smartphone photography to assess bleb morphology and vasculature post-trabeculectomy.
    Kalra G; Ichhpujani P; Thakur S; Singh RB; Sharma U; Kumar S
    Int Ophthalmol; 2021 Feb; 41(2):483-490. PubMed ID: 33051769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can We Trust the Use of Smartphone Cameras in Clinical Practice? Laypeople Assessment of Their Image Quality.
    Boissin C; Fleming J; Wallis L; Hasselberg M; Laflamme L
    Telemed J E Health; 2015 Nov; 21(11):887-92. PubMed ID: 26076033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Telecytology: Is it possible with smartphone images?
    Sahin D; Hacisalihoglu UP; Kirimlioglu SH
    Diagn Cytopathol; 2018 Jan; 46(1):40-46. PubMed ID: 29115040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method and software for segmentation of anatomic object ensembles by deformable m-reps.
    Pizer SM; Fletcher PT; Joshi S; Gash AG; Stough J; Thall A; Tracton G; Chaney EL
    Med Phys; 2005 May; 32(5):1335-45. PubMed ID: 15984685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence.
    Rajalakshmi R; Subashini R; Anjana RM; Mohan V
    Eye (Lond); 2018 Jun; 32(6):1138-1144. PubMed ID: 29520050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of an artificial intelligence-based system in the diagnosis of breast ultrasound images obtained using a smartphone.
    Mori R; Okawa M; Tokumaru Y; Niwa Y; Matsuhashi N; Futamura M
    World J Surg Oncol; 2024 Jan; 22(1):2. PubMed ID: 38167161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of diagnostic accuracy of plain film radiographs between original film and smartphone capture: a pilot study.
    Licurse MY; Kim SH; Kim W; Ruutiainen AT; Cook TS
    J Digit Imaging; 2015 Dec; 28(6):646-53. PubMed ID: 25840654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Routine Photography of Injuries: A Comparison Between Smartphone Cameras and Digital Single-Lens Camera-A Pilot Study.
    Giorgetti A; Pascali JP; Pelletti G; Silvestri A; Giovannini E; Pelotti S; Fais P
    Am J Forensic Med Pathol; 2023 Jun; 44(2):83-89. PubMed ID: 37010986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. goFOOD
    Lu Y; Stathopoulou T; Vasiloglou MF; Pinault LF; Kiley C; Spanakis EK; Mougiakakou S
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32752007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AI-based mobile application to fight antibiotic resistance.
    Pascucci M; Royer G; Adamek J; Asmar MA; Aristizabal D; Blanche L; Bezzarga A; Boniface-Chang G; Brunner A; Curel C; Dulac-Arnold G; Fakhri RM; Malou N; Nordon C; Runge V; Samson F; Sebastian E; Soukieh D; Vert JP; Ambroise C; Madoui MA
    Nat Commun; 2021 Feb; 12(1):1173. PubMed ID: 33608509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.