These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30558278)

  • 41. Effect of bovine blastocyst size at embryo transfer on day 7 on conceptus length on day 14: can supplementary progesterone rescue small embryos?
    O'Hara L; Forde N; Kelly AK; Lonergan P
    Theriogenology; 2014 May; 81(8):1123-8. PubMed ID: 24582375
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Review: Segmentation and classification methods of 3D medical images].
    Tan O; Duan HL; Lu WX
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(3):197-206. PubMed ID: 16104307
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Open-source Smartphone Adapter in Digital Photomicrography.
    Mondal H; Mondal S
    J Microsc Ultrastruct; 2022; 10(1):7-9. PubMed ID: 35433256
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automatic segmentation of trophectoderm in microscopic images of human blastocysts.
    Singh A; Au J; Saeedi P; Havelock J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):382-93. PubMed ID: 25216475
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of descriptor vector scaling on the classification of drugs and nondrugs with artificial neural networks.
    Givehchi A; Schneider G
    J Mol Model; 2004 Jun; 10(3):204-11. PubMed ID: 15067522
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyes.
    Haddock LJ; Kim DY; Mukai S
    J Ophthalmol; 2013; 2013():518479. PubMed ID: 24171108
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic intraocular lens segmentation and detection in optical coherence tomography images.
    Gillner M; Eppig T; Langenbucher A
    Z Med Phys; 2014 May; 24(2):104-11. PubMed ID: 23928353
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Smartphones, artificial intelligence and digital histopathology take on basal cell carcinoma diagnosis.
    Lee KJ; Soyer HP
    Br J Dermatol; 2020 Mar; 182(3):540-541. PubMed ID: 31429070
    [No Abstract]   [Full Text] [Related]  

  • 49. Tongue fissure extraction and classification using hyperspectral imaging technology.
    Li Q; Wang Y; Liu H; Sun Z; Liu Z
    Appl Opt; 2010 Apr; 49(11):2006-13. PubMed ID: 20389998
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a Low-cost Smartphone-connected Digital Microscope.
    Mondal H; Mondal S; Saha K; Roul B
    J Microsc Ultrastruct; 2020; 8(2):51-54. PubMed ID: 32766118
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Performance gain in computer-assisted detection schemes by averaging scores generated from artificial neural networks with adaptive filtering.
    Zheng B; Chang YH; Good WF; Gur D
    Med Phys; 2001 Nov; 28(11):2302-8. PubMed ID: 11764037
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spiral drawing: Quantitative analysis and artificial-intelligence-based diagnosis using a smartphone.
    Ishii N; Mochizuki Y; Shiomi K; Nakazato M; Mochizuki H
    J Neurol Sci; 2020 Apr; 411():116723. PubMed ID: 32050132
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features.
    Joo S; Yang YS; Moon WK; Kim HC
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1292-300. PubMed ID: 15493696
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Smartphone-Based Genotyping Method for Hepatitis B Virus at Point-of-Care Settings.
    Jiang H; Wu D; Song L; Yuan Q; Ge S; Min X; Xia N; Qian S; Qiu X
    SLAS Technol; 2017 Apr; 22(2):122-129. PubMed ID: 27899699
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Content-based image retrieval system using neural networks.
    Ikeda T; Hagiwara M
    Int J Neural Syst; 2000 Oct; 10(5):417-24. PubMed ID: 11195939
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Smartphone-based wound assessment system for patients with diabetes.
    Wang L; Pedersen PC; Strong DM; Tulu B; Agu E; Ignotz R
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):477-88. PubMed ID: 25248175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Novel Digital Algorithm for Identifying Liver Steatosis Using Smartphone-Captured Images.
    Xu K; Raigani S; Shih A; Baptista SG; Rosales I; Parry NM; Shroff SG; Misdraji J; Uygun K; Yeh H; Fairchild K; Anne Dageforde L
    Transplant Direct; 2022 Sep; 8(9):e1361. PubMed ID: 35935028
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development and characterization of portable smartphone-based imaging device.
    Banik S; Mahato KK; Antonini A; Mazumder N
    Microsc Res Tech; 2020 Nov; 83(11):1336-1344. PubMed ID: 32656935
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MDS-based multiresolution nonlinear dimensionality reduction model for color image segmentation.
    Mignotte M
    IEEE Trans Neural Netw; 2011 Mar; 22(3):447-60. PubMed ID: 21257375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.