These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30558364)

  • 1. Heterodimeric Plasmonic Nanogaps for Biosensing.
    Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating acoustic and plasmonic modes in gold nanostars.
    Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G
    Nanoscale Adv; 2019 Jul; 1(7):2690-2698. PubMed ID: 36132721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostar Clustering Improves the Sensitivity of Plasmonic Assays.
    Park YI; Im H; Weissleder R; Lee H
    Bioconjug Chem; 2015 Aug; 26(8):1470-4. PubMed ID: 26102604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal plasmonic nanostar antennas with wide range resonance tunability.
    Tsoulos TV; Atta S; Lagos MJ; Beetz M; Batson PE; Tsilomelekis G; Fabris L
    Nanoscale; 2019 Oct; 11(40):18662-18671. PubMed ID: 31584591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D zig-zag nanogaps based on nanoskiving for plasmonic nanofocusing.
    Gu P; Zhou Z; Zhao Z; Möhwald H; Li C; Chiechi RC; Shi Z; Zhang G
    Nanoscale; 2019 Feb; 11(8):3583-3590. PubMed ID: 30729970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning gold nanostar morphology for the SERS detection of uranyl.
    Harder RA; Wijenayaka LA; Phan HT; Haes AJ
    J Raman Spectrosc; 2021 Feb; 52(2):497-505. PubMed ID: 34177076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering.
    Chirumamilla M; Toma A; Gopalakrishnan A; Das G; Zaccaria RP; Krahne R; Rondanina E; Leoncini M; Liberale C; De Angelis F; Di Fabrizio E
    Adv Mater; 2014 Apr; 26(15):2353-8. PubMed ID: 24452910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Nanoparticle Size on Plasmon-Driven Reaction Efficiency.
    Kim S; Lee S; Yoon S
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4163-4169. PubMed ID: 35006675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.
    Tian Y; Shuai Z; Shen J; Zhang L; Chen S; Song C; Zhao B; Fan Q; Wang L
    Small; 2018 Jun; 14(24):e1800669. PubMed ID: 29736956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small mode volume plasmonic film-coupled nanostar resonators.
    Charchi N; Li Y; Huber M; Kwizera EA; Huang X; Argyropoulos C; Hoang T
    Nanoscale Adv; 2020 Jun; 2(6):2397-2403. PubMed ID: 34046555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps.
    Wang Y; Wang H; Wang Y; Shen Y; Xu S; Xu W
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15623-9. PubMed ID: 27250862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of Gold Nanostar Cores Within Silica Shells and Its Impact on Solid-State SERS and Nonenzymatic Catalytic Sensing.
    Dey S; Ghosh SK; Satpati B
    Langmuir; 2024 Jul; ():. PubMed ID: 39024338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface enhanced infrared absorption spectroscopy based on gold nanostars and spherical nanoparticles.
    Bibikova O; Haas J; López-Lorente ÁI; Popov A; Kinnunen M; Ryabchikov Y; Kabashin A; Meglinski I; Mizaikoff B
    Anal Chim Acta; 2017 Oct; 990():141-149. PubMed ID: 29029737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Surface Curvature in Gold Nanostar Properties and Applications.
    Xi Z; Zhang R; Kiessling F; Lammers T; Pallares RM
    ACS Biomater Sci Eng; 2024 Jan; 10(1):38-50. PubMed ID: 37249042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern Recognition Directed Assembly of Plasmonic Gap Nanostructures for Single-Molecule SERS.
    Niu R; Gao F; Wang D; Zhu D; Su S; Chen S; YuWen L; Fan C; Wang L; Chao J
    ACS Nano; 2022 Sep; 16(9):14622-14631. PubMed ID: 36083609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide.
    Wu Q; Sun Y; Ma P; Zhang D; Li S; Wang X; Song D
    Anal Chim Acta; 2016 Mar; 913():137-44. PubMed ID: 26944998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Au nanostar Raman probes coupling with highly ordered TiO
    Wen S; Su Y; Wu R; Zhou S; Min Q; Fan GC; Jiang LP; Song RB; Zhu JJ
    Biosens Bioelectron; 2018 Oct; 117():260-266. PubMed ID: 29909197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.