These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30558379)

  • 1. Physics of Discrete Impurities under the Frameworkof Device Simulations for Nanostructure Devices.
    Sano N; Yoshida K; Yao CW; Watanabe H
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30558379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum kinetic equation for the Wigner function and reduction to the Boltzmann transport equation under discrete impurities.
    Sano N
    Phys Rev E; 2021 Jul; 104(1-1):014141. PubMed ID: 34412367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices.
    Chen D; Wei GW
    J Comput Phys; 2010 Jun; 229(12):4431-4460. PubMed ID: 20396650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities.
    Jung HS; Tsai HZ; Wong D; Germany C; Kahn S; Kim Y; Aikawa AS; Desai DK; Rodgers GF; Bradley AJ; Velasco J; Watanabe K; Taniguchi T; Wang F; Zettl A; Crommie MF
    J Vis Exp; 2015 Jul; (101):e52711. PubMed ID: 26273961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and Modeling of Novel Electronic Device Architectures with NESS (Nano-Electronic Simulation Software): A Modular Nano TCAD Simulation Framework.
    Medina-Bailon C; Dutta T; Rezaei A; Nagy D; Adamu-Lema F; Georgiev VP; Asenov A
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34200658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient evaluation of Coulomb interactions in kinetic Monte Carlo simulations of charge transport.
    Pippig M; Mercuri F
    J Chem Phys; 2020 Apr; 152(16):164102. PubMed ID: 32357790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Monte Carlo Modeling of Charge Carriers in Organic Electronic Devices: Suppression of the Self-Interaction Error.
    Li H; Brédas JL
    J Phys Chem Lett; 2017 Jun; 8(11):2507-2512. PubMed ID: 28520427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.
    Cornil J; Verlaak S; Martinelli N; Mityashin A; Olivier Y; Van Regemorter T; D'Avino G; Muccioli L; Zannoni C; Castet F; Beljonne D; Heremans P
    Acc Chem Res; 2013 Feb; 46(2):434-43. PubMed ID: 23140088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1-D simulation of a novel nonvolatile resistive random access memory device.
    Meyer R; Kohlstedt H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2340-8. PubMed ID: 17186916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Transport in a Silicon Nanowire FET Transistor: Hot Electrons and Local Power Dissipation.
    Martinez A; Barker JR
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance enhancement of semiconductor devices by control of discrete dopant distribution.
    Hori M; Shinada T; Taira K; Shimamoto N; Tanii T; Endo T; Ohdomari I
    Nanotechnology; 2009 Sep; 20(36):365205. PubMed ID: 19687545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of the Impact of Ionized Impurity Scattering on the Total Mobility in Si Nanowire Transistors.
    Sadi T; Medina-Bailon C; Nedjalkov M; Lee J; Badami O; Berrada S; Carrillo-Nunez H; Georgiev V; Selberherr S; Asenov A
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30609720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing semiconductor device performance using ordered dopant arrays.
    Shinada T; Okamoto S; Kobayashi T; Ohdomari I
    Nature; 2005 Oct; 437(7062):1128-31. PubMed ID: 16237438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of graphene nanoribbon devices.
    Guo J
    Nanoscale; 2012 Sep; 4(18):5538-48. PubMed ID: 22875475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of carrier transport in organic light emitting diode with random dopant effects by two-dimensional simulation.
    Kung TJ; Huang JY; Huang JJ; Tseng SH; Leung MK; Chiu TL; Lee JH; Wu YR
    Opt Express; 2017 Oct; 25(21):25492-25503. PubMed ID: 29041216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOSFET Physics-Based Compact Model Mass-Produced: An Artificial Neural Network Approach.
    Huang S; Wang L
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of ion transport phenomena in memristive double barrier devices.
    Dirkmann S; Hansen M; Ziegler M; Kohlstedt H; Mussenbrock T
    Sci Rep; 2016 Oct; 6():35686. PubMed ID: 27762294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography.
    Somodi PK; Twitchett-Harrison AC; Midgley PA; Kardynał BE; Barnes CH; Dunin-Borkowski RE
    Ultramicroscopy; 2013 Nov; 134():160-6. PubMed ID: 23953735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of charge impurities in a silicon metal-oxide-semiconductor quantum dot qubit device patterned with nano-imprint lithography.
    Penthorn NE; Schoenfield JS; Rooney JD; Jiang H
    Nanotechnology; 2019 Nov; 30(46):465302. PubMed ID: 31426049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional doping and diffusion in nano scaled devices as studied by atom probe tomography.
    Kambham AK; Kumar A; Florakis A; Vandervorst W
    Nanotechnology; 2013 Jul; 24(27):275705. PubMed ID: 23764804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.