BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30558537)

  • 1. Comparative transcriptome analysis revealed key factors for differential cadmium transport and retention in roots of two contrasting peanut cultivars.
    Yu R; Ma Y; Li Y; Li X; Liu C; Du X; Shi G
    BMC Genomics; 2018 Dec; 19(1):938. PubMed ID: 30558537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative proteomics analysis of peanut roots reveals differential mechanisms of cadmium detoxification and translocation between two cultivars differing in cadmium accumulation.
    Yu R; Jiang Q; Xv C; Li L; Bu S; Shi G
    BMC Plant Biol; 2019 Apr; 19(1):137. PubMed ID: 30975099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars.
    Yu R; Li D; Du X; Xia S; Liu C; Shi G
    BMC Genomics; 2017 Aug; 18(1):587. PubMed ID: 28789614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium re-distribution from pod and root zones and accumulation by peanut (Arachis hypogaea L.).
    Wang K; Song N; Zhao Q; van der Zee SE
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1441-8. PubMed ID: 26370815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency.
    Chen C; Cao Q; Jiang Q; Li J; Yu R; Shi G
    BMC Plant Biol; 2019 Jan; 19(1):35. PubMed ID: 30665365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of root uptake to cadmium accumulation in two peanut cultivars: evidence from a split-column soil experiment.
    Wang K; Wang F; Song N; Liu J; Zhang T; Wang M; Wang Y
    Environ Sci Pollut Res Int; 2018 May; 25(15):15036-15043. PubMed ID: 29552720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance.
    Liu PH; Huang ZX; Luo XH; Chen H; Weng BQ; Wang YX; Chen LS
    PLoS One; 2020; 15(9):e0239617. PubMed ID: 32991614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation.
    Lu Z; Zhang Z; Su Y; Liu C; Shi G
    Ecotoxicol Environ Saf; 2013 May; 91():147-55. PubMed ID: 23410837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of cadmium responsive microRNAs in roots of two Ipomoea aquatica Forsk. cultivars with different cadmium accumulation capacities.
    Shen C; Huang YY; He CT; Zhou Q; Chen JX; Tan X; Mubeen S; Yuan JG; Yang ZY
    Plant Physiol Biochem; 2017 Feb; 111():329-339. PubMed ID: 27992771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.).
    Xu L; Wang Y; Liu W; Wang J; Zhu X; Zhang K; Yu R; Wang R; Xie Y; Zhang W; Gong Y; Liu L
    Plant Sci; 2015 Jul; 236():313-23. PubMed ID: 26025544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus).
    Zhang XD; Meng JG; Zhao KX; Chen X; Yang ZM
    Biometals; 2018 Feb; 31(1):107-121. PubMed ID: 29250721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq.
    Cao ZZ; Lin XY; Yang YJ; Guan MY; Xu P; Chen MX
    BMC Plant Biol; 2019 Jun; 19(1):250. PubMed ID: 31185911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Transcriptome Analysis of Two Ipomoea aquatica Forsk. Cultivars Targeted To Explore Possible Mechanism of Genotype-Dependent Accumulation of Cadmium.
    Huang YY; Shen C; Chen JX; He CT; Zhou Q; Tan X; Yuan JG; Yang ZY
    J Agric Food Chem; 2016 Jun; 64(25):5241-50. PubMed ID: 27267580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis reveals significant difference in gene expression and pathways between two peanut cultivars under Al stress.
    Xiao D; Li X; Zhou YY; Wei L; Keovongkod C; He H; Zhan J; Wang AQ; He LF
    Gene; 2021 May; 781():145535. PubMed ID: 33631240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes.
    Tan M; Cheng D; Yang Y; Zhang G; Qin M; Chen J; Chen Y; Jiang M
    BMC Plant Biol; 2017 Nov; 17(1):194. PubMed ID: 29115926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis providing novel insights for Cd-resistant tall fescue responses to Cd stress.
    Zhu H; Ai H; Cao L; Sui R; Ye H; Du D; Sun J; Yao J; Chen K; Chen L
    Ecotoxicol Environ Saf; 2018 Sep; 160():349-356. PubMed ID: 29860131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative profiling of roots small RNA expression and corresponding gene ontology and pathway analyses for low- and high-cadmium-accumulating genotypes of wheat in response to cadmium stress.
    Zhou M; Zheng S; Li Y; Liu R; Zhang L; Wu Y
    Funct Integr Genomics; 2020 Mar; 20(2):177-190. PubMed ID: 31435847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of root transcriptome profiles between low- and high-cadmium-accumulating genotypes of wheat in response to cadmium stress.
    Zhou M; Zheng S; Liu R; Lu J; Lu L; Zhang C; Liu Z; Luo C; Zhang L; Wu Y
    Funct Integr Genomics; 2019 Mar; 19(2):281-294. PubMed ID: 30443851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation.
    Milner MJ; Mitani-Ueno N; Yamaji N; Yokosho K; Craft E; Fei Z; Ebbs S; Clemencia Zambrano M; Ma JF; Kochian LV
    Plant J; 2014 May; 78(3):398-410. PubMed ID: 24547775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum.
    Chen Y; Ren X; Zhou X; Huang L; Yan L; Lei Y; Liao B; Huang J; Huang S; Wei W; Jiang H
    BMC Genomics; 2014 Dec; 15(1):1078. PubMed ID: 25481772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.