BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 30558676)

  • 1. The ruxolitinib effect: understanding how molecular pathogenesis and epigenetic dysregulation impact therapeutic efficacy in myeloproliferative neoplasms.
    Greenfield G; McPherson S; Mills K; McMullin MF
    J Transl Med; 2018 Dec; 16(1):360. PubMed ID: 30558676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The BCR-ABL1-negative myeloproliferative neoplasms: a review of JAK inhibitors in the therapeutic armamentarium.
    Griesshammer M; Sadjadian P
    Expert Opin Pharmacother; 2017 Dec; 18(18):1929-1938. PubMed ID: 29134817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classical Philadelphia-negative myeloproliferative neoplasms: focus on mutations and JAK2 inhibitors.
    Helbig G
    Med Oncol; 2018 Aug; 35(9):119. PubMed ID: 30074114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biology and clinical management of myeloproliferative neoplasms and development of the JAK inhibitor ruxolitinib.
    Mascarenhas J; Mughal TI; Verstovsek S
    Curr Med Chem; 2012; 19(26):4399-413. PubMed ID: 22830345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel therapeutics in myeloproliferative neoplasms.
    Venugopal S; Mascarenhas J
    J Hematol Oncol; 2020 Dec; 13(1):162. PubMed ID: 33267911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational landscape of blast phase myeloproliferative neoplasms (MPN-BP) and antecedent MPN.
    Pasca S; Chifotides HT; Verstovsek S; Bose P
    Int Rev Cell Mol Biol; 2022; 366():83-124. PubMed ID: 35153007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current outlook on molecular pathogenesis and treatment of myeloproliferative neoplasms.
    Tibes R; Bogenberger JM; Benson KL; Mesa RA
    Mol Diagn Ther; 2012 Oct; 16(5):269-83. PubMed ID: 23023734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE): 5-year follow up of a phase 3 study.
    Kiladjian JJ; Zachee P; Hino M; Pane F; Masszi T; Harrison CN; Mesa R; Miller CB; Passamonti F; Durrant S; Griesshammer M; Kirito K; Besses C; Moiraghi B; Rumi E; Rosti V; Blau IW; Francillard N; Dong T; Wroclawska M; Vannucchi AM; Verstovsek S
    Lancet Haematol; 2020 Mar; 7(3):e226-e237. PubMed ID: 31982039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JAK inhibitors: pharmacology and clinical activity in chronic myeloprolipherative neoplasms.
    Treliński J; Robak T
    Curr Med Chem; 2013; 20(9):1147-61. PubMed ID: 23317159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloproliferative and lymphoproliferative disorders: State of the art.
    Rumi E; Baratè C; Benevolo G; Maffioli M; Ricco A; Sant'Antonio E
    Hematol Oncol; 2020 Apr; 38(2):121-128. PubMed ID: 31833567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy.
    Pasquier F; Cabagnols X; Secardin L; Plo I; Vainchenker W
    Clin Lymphoma Myeloma Leuk; 2014 Sep; 14 Suppl():S23-35. PubMed ID: 25486952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond.
    Michiels JJ; Berneman Z; Schroyens W; De Raeve H
    Acta Haematol; 2015; 133(1):36-51. PubMed ID: 25116092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of bone marrow pathology on the clinical management of Philadelphia chromosome-negative myeloproliferative neoplasms.
    Pozdnyakova O; Hasserjian RP; Verstovsek S; Orazi A
    Clin Lymphoma Myeloma Leuk; 2015 May; 15(5):253-61. PubMed ID: 25515354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myeloproliferative Neoplasms: A Contemporary Review.
    Tefferi A; Pardanani A
    JAMA Oncol; 2015 Apr; 1(1):97-105. PubMed ID: 26182311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms.
    O'Sullivan JM; Harrison CN
    Mol Cell Endocrinol; 2017 Aug; 451():71-79. PubMed ID: 28167129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overcoming treatment challenges in myelofibrosis and polycythemia vera: the role of ruxolitinib.
    Bryan JC; Verstovsek S
    Cancer Chemother Pharmacol; 2016 Jun; 77(6):1125-42. PubMed ID: 27017614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable.
    Kim SY; Im K; Park SN; Kwon J; Kim JA; Lee DS
    Am J Clin Pathol; 2015 May; 143(5):635-44. PubMed ID: 25873496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SHP2 inhibition displays efficacy as a monotherapy and in combination with JAK2 inhibition in preclinical models of myeloproliferative neoplasms.
    Pandey G; Mazzacurati L; Rowsell TM; Horvat NP; Amin NE; Zhang G; Akuffo AA; Colin-Leitzinger CM; Haura EB; Kuykendall AT; Zhang L; Epling-Burnette PK; Reuther GW
    Am J Hematol; 2024 Jun; 99(6):1040-1055. PubMed ID: 38440831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of JAK inhibitors in myeloproliferative neoplasms: current point of view and perspectives.
    Loscocco GG; Vannucchi AM
    Int J Hematol; 2022 May; 115(5):626-644. PubMed ID: 35352288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Not Available].
    Mosca M; Vertenoeil G; Toppaldoddi KR; Plo I; Vainchenker W
    Bull Cancer; 2016 Jun; 103(6 Suppl 1):S16-28. PubMed ID: 27494969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.