These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30558718)

  • 1. Asymmetric protein design from conserved supersecondary structures.
    ElGamacy M; Coles M; Lupas A
    J Struct Biol; 2018 Dec; 204(3):380-387. PubMed ID: 30558718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a novel globular protein fold with atomic-level accuracy.
    Kuhlman B; Dantas G; Ireton GC; Varani G; Stoddard BL; Baker D
    Science; 2003 Nov; 302(5649):1364-8. PubMed ID: 14631033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G
    Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational protein design with electrostatic focusing: experimental characterization of a conditionally folded helical domain with a reduced amino acid alphabet.
    Suárez-Diez M; Pujol AM; Matzapetakis M; Jaramillo A; Iranzo O
    Biotechnol J; 2013 Jul; 8(7):855-64. PubMed ID: 23788466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational simulations of protein folding to engineer amino acid sequences to encourage desired supersecondary structure formation.
    Gerstman BS; Chapagain PP
    Methods Mol Biol; 2013; 932():191-204. PubMed ID: 22987354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein folding at atomic resolution: analysis of autonomously folding supersecondary structure motifs by nuclear magnetic resonance.
    Sborgi L; Verma A; Sadqi M; de Alba E; Muñoz V
    Methods Mol Biol; 2013; 932():205-18. PubMed ID: 22987355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The histone H1 globular region. A possible supersecondary structure from spectroscopic and statistical studies.
    Pepe I; Catasti P; Rauch G; Nizzari M; Nicolini C
    Biochim Biophys Acta; 1990 Oct; 1041(1):14-21. PubMed ID: 2223843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the effect of a point mutation on a protein fold: the villin and advillin headpieces and their Pro62Ala mutants.
    Piana S; Laio A; Marinelli F; Van Troys M; Bourry D; Ampe C; Martins JC
    J Mol Biol; 2008 Jan; 375(2):460-70. PubMed ID: 18022635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution protein design with backbone freedom.
    Harbury PB; Plecs JJ; Tidor B; Alber T; Kim PS
    Science; 1998 Nov; 282(5393):1462-7. PubMed ID: 9822371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences.
    Oldfield CJ; Chen K; Kurgan L
    Methods Mol Biol; 2019; 1958():73-100. PubMed ID: 30945214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins.
    Dantas G; Kuhlman B; Callender D; Wong M; Baker D
    J Mol Biol; 2003 Sep; 332(2):449-60. PubMed ID: 12948494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Secondary and Supersecondary Structure of Proteins as a Result of Coupling Between Local and Backbone-Electrostatic Interactions: A View Through Cluster-Cumulant Scope.
    Liwo A; Sieradzan AK; Czaplewski C
    Methods Mol Biol; 2019; 1958():133-146. PubMed ID: 30945217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of a leucine-rich repeat protein with a predefined geometry.
    Rämisch S; Weininger U; Martinsson J; Akke M; André I
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17875-80. PubMed ID: 25427795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. βαβ Super-Secondary Motifs: Sequence, Structural Overview, and Pursuit of Potential Autonomously Folding βαβ Sequences from (β/α)
    Kadamuri RV; Irukuvajjula SS; Vadrevu R
    Methods Mol Biol; 2019; 1958():221-236. PubMed ID: 30945221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-based redesign of a beta sandwich protein suggests that extensive negative design is not required for de novo beta sheet design.
    Hu X; Wang H; Ke H; Kuhlman B
    Structure; 2008 Dec; 16(12):1799-805. PubMed ID: 19081056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modular perspective of protein structures: application to fragment based loop modeling.
    Fernandez-Fuentes N; Fiser A
    Methods Mol Biol; 2013; 932():141-58. PubMed ID: 22987351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of a naturally-occurring zinc-peptide complex demonstrates that the N-terminal zinc-binding module of the Lasp-1 LIM domain is an independent folding unit.
    Hammarström A; Berndt KD; Sillard R; Adermann K; Otting G
    Biochemistry; 1996 Oct; 35(39):12723-32. PubMed ID: 8841116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns and conformations of commonly occurring supersecondary structures (basic motifs) in protein data bank.
    Sun Z; Jiang B
    J Protein Chem; 1996 Oct; 15(7):675-90. PubMed ID: 8968959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a 20-amino acid, three-stranded beta-sheet protein.
    Kortemme T; Ramírez-Alvarado M; Serrano L
    Science; 1998 Jul; 281(5374):253-6. PubMed ID: 9657719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-native local interactions in protein folding and stability: introducing a helical tendency in the all beta-sheet alpha-spectrin SH3 domain.
    Prieto J; Wilmans M; Jiménez MA; Rico M; Serrano L
    J Mol Biol; 1997 May; 268(4):760-78. PubMed ID: 9175859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.