These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 30558964)

  • 1. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture.
    Maes WH; Steppe K
    Trends Plant Sci; 2019 Feb; 24(2):152-164. PubMed ID: 30558964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano and Micro Unmanned Aerial Vehicles (UAVs): A New Grand Challenge for Precision Agriculture?
    Gago J; Estrany J; Estes L; Fernie AR; Alorda B; Brotman Y; Flexas J; Escalona JM; Medrano H
    Curr Protoc Plant Biol; 2020 Mar; 5(1):e20103. PubMed ID: 32074410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management.
    Hunter JE; Gannon TW; Richardson RJ; Yelverton FH; Leon RG
    Pest Manag Sci; 2020 Apr; 76(4):1386-1392. PubMed ID: 31622004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Multiple UAV Collaborative Driving Systems for Improving Field Phenotyping.
    Lee HS; Shin BS; Thomasson JA; Wang T; Zhang Z; Han X
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evapotranspiration Estimation with Small UAVs in Precision Agriculture.
    Niu H; Hollenbeck D; Zhao T; Wang D; Chen Y
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images.
    Tunca E; Köksal ES; Çetin S; Ekiz NM; Balde H
    Environ Monit Assess; 2018 Oct; 190(11):682. PubMed ID: 30374821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved weed mapping in corn fields by combining UAV-based spectral, textural, structural, and thermal measurements.
    Xu B; Meng R; Chen G; Liang L; Lv Z; Zhou L; Sun R; Zhao F; Yang W
    Pest Manag Sci; 2023 Jul; 79(7):2591-2602. PubMed ID: 36883563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of End-Of-Season Tuber Yield and Tuber Set in Potatoes Using In-Season UAV-Based Hyperspectral Imagery and Machine Learning.
    Sun C; Feng L; Zhang Z; Ma Y; Crosby T; Naber M; Wang Y
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32947919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of High-Resolution Multispectral UAVs to Calculate Projected Ground Area in
    Altieri G; Maffia A; Pastore V; Amato M; Celano G
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes - A systematic review.
    Librán-Embid F; Klaus F; Tscharntke T; Grass I
    Sci Total Environ; 2020 Aug; 732():139204. PubMed ID: 32438190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle.
    Diaz-Varela RA; Zarco-Tejada PJ; Angileri V; Loudjani P
    J Environ Manage; 2014 Feb; 134():117-26. PubMed ID: 24473345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sentinel-2 Data for Precision Agriculture?-A UAV-Based Assessment.
    Bukowiecki J; Rose T; Kage H
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a VNIR/SWIR Multispectral Imaging System for Vegetation Monitoring with Unmanned Aerial Vehicles.
    Jenal A; Bareth G; Bolten A; Kneer C; Weber I; Bongartz J
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are unmanned aerial vehicle-based hyperspectral imaging and machine learning advancing crop science?
    Matese A; Prince Czarnecki JM; Samiappan S; Moorhead R
    Trends Plant Sci; 2024 Feb; 29(2):196-209. PubMed ID: 37802693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote Sensing and Reflectance Profiling in Entomology.
    Nansen C; Elliott N
    Annu Rev Entomol; 2016; 61():139-58. PubMed ID: 26982438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UAV remote sensing applications in marine monitoring: Knowledge visualization and review.
    Yang Z; Yu X; Dedman S; Rosso M; Zhu J; Yang J; Xia Y; Tian Y; Zhang G; Wang J
    Sci Total Environ; 2022 Sep; 838(Pt 1):155939. PubMed ID: 35577092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Improved Crop Scouting Technique Incorporating Unmanned Aerial Vehicle-Assisted Multispectral Crop Imaging into Conventional Scouting Practice for Gummy Stem Blight in Watermelon.
    Kalischuk M; Paret ML; Freeman JH; Raj D; Da Silva S; Eubanks S; Wiggins DJ; Lollar M; Marois JJ; Mellinger HC; Das J
    Plant Dis; 2019 Jul; 103(7):1642-1650. PubMed ID: 31082305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.