These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30559098)

  • 1. [Regulation of VPS28 gene knockdown on the milk fat synthesis in Chinese Holstein dairy].
    Liu LL; Guo AW; Wu PF; Chen FF; Yang YJ; Zhang Q
    Yi Chuan; 2018 Dec; 40(12):1092-1100. PubMed ID: 30559098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and functional analysis of candidate gene VPS28 for milk fat in bovine mammary epithelial cells.
    Liu L; Zhang Q
    Biochem Biophys Res Commun; 2019 Mar; 510(4):606-613. PubMed ID: 30739790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteome analysis reveals VPS28 regulates milk fat synthesis through ubiquitylation in bovine mammary epithelial cells.
    Liu L; Zhang Q
    PeerJ; 2020; 8():e9542. PubMed ID: 33194328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short communication: Replication of genome-wide association studies for milk production traits in Chinese Holstein by an efficient rotated linear mixed model.
    Wang D; Ning C; Liu JF; Zhang Q; Jiang L
    J Dairy Sci; 2019 Mar; 102(3):2378-2383. PubMed ID: 30639022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of genetic effects of ATF3 and CDKN1A genes on milk yield and compositions in Chinese Holstein population.
    Han B; Liang W; Liu L; Li Y; Sun D
    BMC Genet; 2017 May; 18(1):47. PubMed ID: 28525989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin suppresses milk fat synthesis by inhibiting the mTOR signaling pathway via the MT1 receptor in bovine mammary epithelial cells.
    Wang Y; Guo W; Xu H; Tang K; Zan L; Yang W
    J Pineal Res; 2019 Oct; 67(3):e12593. PubMed ID: 31278759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle.
    Rincon G; Islas-Trejo A; Castillo AR; Bauman DE; German BJ; Medrano JF
    J Dairy Res; 2012 Feb; 79(1):66-75. PubMed ID: 22114848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional validation of GPIHBP1 and identification of a functional mutation in GPIHBP1 for milk fat traits in dairy cattle.
    Yang J; Liu X; Wang D; Ning C; Wang H; Zhang Q; Jiang L
    Sci Rep; 2017 Aug; 7(1):8546. PubMed ID: 28819221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint genome-wide association study for milk fatty acid traits in Chinese and Danish Holstein populations.
    Li X; Buitenhuis AJ; Lund MS; Li C; Sun D; Zhang Q; Poulsen NA; Su G
    J Dairy Sci; 2015 Nov; 98(11):8152-63. PubMed ID: 26364108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel functional mutation of the PDIA3 gene affects milk composition traits in Chinese Holstein cattle.
    Liu S; Deng T; Hua L; Zhao X; Wu H; Sun P; Liu M; Zhang S; Yang L; Liang A
    J Dairy Sci; 2022 Jun; 105(6):5153-5166. PubMed ID: 35379459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of polymorphism of the
    Yu H; Zhao Y; Iqbal A; Xia L; Bai Z; Sun H; Fang X; Yang R; Zhao Z
    Arch Anim Breed; 2021; 64(1):35-44. PubMed ID: 34084902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A post-GWAS confirming the SCD gene associated with milk medium- and long-chain unsaturated fatty acids in Chinese Holstein population.
    Li C; Sun D; Zhang S; Liu L; Alim MA; Zhang Q
    Anim Genet; 2016 Aug; 47(4):483-90. PubMed ID: 26970560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The regulation of ubiquitination in milk fat synthesis in bovine].
    Liu LL; Guo AW; Li Q; Wu PF; Yang Y; Chen FF; Li SH; Guo PJ; Zhang Q
    Yi Chuan; 2020 Jun; 42(6):548-555. PubMed ID: 32694113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CNV discovery for milk composition traits in dairy cattle using whole genome resequencing.
    Gao Y; Jiang J; Yang S; Hou Y; Liu GE; Zhang S; Zhang Q; Sun D
    BMC Genomics; 2017 Mar; 18(1):265. PubMed ID: 28356085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of bovine fibroblast growth factor 2 (FGF2) gene with milk fat and productive life: an example of the ability of the candidate pathway strategy to identify quantitative trait genes.
    Wang X; Maltecca C; Tal-Stein R; Lipkin E; Khatib H
    J Dairy Sci; 2008 Jun; 91(6):2475-80. PubMed ID: 18487671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical modeling of candidate gene effects on milk production traits in dairy cattle.
    Szyda J; Komisarek J
    J Dairy Sci; 2007 Jun; 90(6):2971-9. PubMed ID: 17517738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle.
    Raven LA; Cocks BG; Kemper KE; Chamberlain AJ; Vander Jagt CJ; Goddard ME; Hayes BJ
    Mamm Genome; 2016 Feb; 27(1-2):81-97. PubMed ID: 26613780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic association of the ACACB gene with milk yield and composition traits in dairy cattle.
    Han B; Liang W; Liu L; Li Y; Sun D
    Anim Genet; 2018 Jun; 49(3):169-177. PubMed ID: 29521460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of PDE9A Gene Identified in GWAS Showing Strong Association with Milk Production Traits in Chinese Holstein.
    Yang SH; Bi XJ; Xie Y; Li C; Zhang SL; Zhang Q; Sun DX
    Int J Mol Sci; 2015 Nov; 16(11):26530-42. PubMed ID: 26556348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of peroxisome proliferator-activated receptor gamma on milk fat synthesis in dairy cow mammary epithelial cells.
    Liu L; Lin Y; Liu L; Wang L; Bian Y; Gao X; Li Q
    In Vitro Cell Dev Biol Anim; 2016 Dec; 52(10):1044-1059. PubMed ID: 27287918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.