These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 30559183)

  • 1. Magnesium stable isotopes support the lunar magma ocean cumulate remelting model for mare basalts.
    Sedaghatpour F; Jacobsen SB
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):73-78. PubMed ID: 30559183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gallium isotopic evidence for extensive volatile loss from the Moon during its formation.
    Kato C; Moynier F
    Sci Adv; 2017 Jul; 3(7):e1700571. PubMed ID: 28782027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Cl isotope composition and halogen contents of Apollo-return samples.
    Gargano A; Sharp Z; Shearer C; Simon JI; Halliday A; Buckley W
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23418-23425. PubMed ID: 32900968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive volatile loss during formation and differentiation of the Moon.
    Kato C; Moynier F; Valdes MC; Dhaliwal JK; Day JMD
    Nat Commun; 2015 Jul; 6():7617. PubMed ID: 26137962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-temperature inter-mineral potassium isotope fractionation: implications for K-Ca-Ar chronology.
    Wilson Kuhnel W; Jacobsen SB; Li Y; Ku Y; Petaev MI; Huang S; Wu Z; Wang 王昆 K
    ACS Earth Space Chem; 2021 Oct; 5(10):2740-2754. PubMed ID: 35005332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An extremely heavy chlorine reservoir in the Moon: Insights from the apatite in lunar meteorites.
    Wang Y; Hsu W; Guan Y
    Sci Rep; 2019 Apr; 9(1):5727. PubMed ID: 30952935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly siderophile element depletion in the Moon.
    Day JMD; Walker RJ
    Earth Planet Sci Lett; 2015 Aug; 423():114-124. PubMed ID: 34465923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Ni and Co olivine in Chang'E-5 basalts reveals the origin of the young volcanism on the Moon.
    Su B; Zhang D; Chen Y; Yang W; Mao Q; Li XH; Wu FY
    Sci Bull (Beijing); 2023 Sep; 68(17):1918-1927. PubMed ID: 37487790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium isotopic evidence for a high-energy giant impact origin of the Moon.
    Wang K; Jacobsen SB
    Nature; 2016 Oct; 538(7626):487-490. PubMed ID: 27617635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chlorine isotope fingerprint of the lunar magma ocean.
    Boyce JW; Treiman AH; Guan Y; Ma C; Eiler JM; Gross J; Greenwood JP; Stolper EM
    Sci Adv; 2015 Sep; 1(8):e1500380. PubMed ID: 26601265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium distribution and isotope composition in the lithospheric mantle in relation to global Earth's reservoirs.
    Ionov DA; Wang K
    Geochim Cosmochim Acta; 2021 Sep; 309():151-170. PubMed ID: 35001942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals.
    Touboul M; Kleine T; Bourdon B; Palme H; Wieler R
    Nature; 2007 Dec; 450(7173):1206-9. PubMed ID: 18097403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model.
    Russell SS; Joy KH; Jeffries TE; Consolmagno GJ; Kearsley A
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130241. PubMed ID: 25114312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geochemical arguments for an Earth-like Moon-forming impactor.
    Dauphas N; Burkhardt C; Warren PH; Fang-Zhen T
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130244. PubMed ID: 25114316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation.
    Carlson RW; Borg LE; Gaffney AM; Boyet M
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130246. PubMed ID: 25114305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen isotopic evidence for accretion of Earth's water before a high-energy Moon-forming giant impact.
    Greenwood RC; Barrat JA; Miller MF; Anand M; Dauphas N; Franchi IA; Sillard P; Starkey NA
    Sci Adv; 2018 Mar; 4(3):eaao5928. PubMed ID: 29600271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Siderophile element constraints on the origin of the Moon.
    Walker RJ
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130258. PubMed ID: 25114313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromite-induced magnesium isotope fractionation during mafic magma differentiation.
    Su BX; Hu Y; Teng FZ; Qin KZ; Bai Y; Sakyi PA; Tang DM
    Sci Bull (Beijing); 2017 Nov; 62(22):1538-1546. PubMed ID: 36659432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotopes as tracers of the sources of the lunar material and processes of lunar origin.
    Pahlevan K
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130257. PubMed ID: 25114306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pb-Pb ages and initial Pb isotopic composition of lunar meteorites: NWA 773 clan, NWA 4734, and Dhofar 287.
    Merle RE; Nemchin AA; Whitehouse MJ; Snape JF; Kenny GG; Bellucci JJ; Connelly JN; Bizzarro M
    Meteorit Planet Sci; 2020 Aug; 55(8):1808-1832. PubMed ID: 34376965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.