These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
827 related articles for article (PubMed ID: 30559184)
1. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2 Fukumoto K; Fogaça MV; Liu RJ; Duman C; Kato T; Li XY; Duman RS Proc Natl Acad Sci U S A; 2019 Jan; 116(1):297-302. PubMed ID: 30559184 [TBL] [Abstract][Full Text] [Related]
2. Brain-derived neurotrophic factor in the ventrolateral periaqueductal gray contributes to (2R,6R)-hydroxynorketamine-mediated actions. Chou D Neuropharmacology; 2020 Jun; 170():108068. PubMed ID: 32222405 [TBL] [Abstract][Full Text] [Related]
3. BDNF-TrkB signaling-mediated upregulation of Narp is involved in the antidepressant-like effects of (2R,6R)-hydroxynorketamine in a chronic restraint stress mouse model. Ju L; Yang J; Zhu T; Liu P; Yang J BMC Psychiatry; 2022 Mar; 22(1):182. PubMed ID: 35291971 [TBL] [Abstract][Full Text] [Related]
4. cAMP-dependent protein kinase signaling is required for ( Riggs LM; Pereira EFR; Thompson SM; Gould TD J Neurophysiol; 2024 Jan; 131(1):64-74. PubMed ID: 38050689 [TBL] [Abstract][Full Text] [Related]
6. Ketamine and its metabolite (2R,6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit. Yao N; Skiteva O; Zhang X; Svenningsson P; Chergui K Mol Psychiatry; 2018 Oct; 23(10):2066-2077. PubMed ID: 29158578 [TBL] [Abstract][Full Text] [Related]
7. (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray. Chou D; Peng HY; Lin TB; Lai CY; Hsieh MC; Wen YC; Lee AS; Wang HH; Yang PS; Chen GD; Ho YC Neuropharmacology; 2018 Sep; 139():1-12. PubMed ID: 29953886 [TBL] [Abstract][Full Text] [Related]
9. Pharmacological evaluation of clinically relevant concentrations of (2R,6R)-hydroxynorketamine. Shaffer CL; Dutra JK; Tseng WC; Weber ML; Bogart LJ; Hales K; Pang J; Volfson D; Am Ende CW; Green ME; Buhl DL Neuropharmacology; 2019 Jul; 153():73-81. PubMed ID: 31015046 [TBL] [Abstract][Full Text] [Related]
10. Antidepressant-relevant concentrations of the ketamine metabolite (2 Lumsden EW; Troppoli TA; Myers SJ; Zanos P; Aracava Y; Kehr J; Lovett J; Kim S; Wang FH; Schmidt S; Jenne CE; Yuan P; Morris PJ; Thomas CJ; Zarate CA; Moaddel R; Traynelis SF; Pereira EFR; Thompson SM; Albuquerque EX; Gould TD Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5160-5169. PubMed ID: 30796190 [TBL] [Abstract][Full Text] [Related]
11. (R)-Ketamine exerts antidepressant actions partly via conversion to (2R,6R)-hydroxynorketamine, while causing adverse effects at sub-anaesthetic doses. Zanos P; Highland JN; Liu X; Troppoli TA; Georgiou P; Lovett J; Morris PJ; Stewart BW; Thomas CJ; Thompson SM; Moaddel R; Gould TD Br J Pharmacol; 2019 Jul; 176(14):2573-2592. PubMed ID: 30941749 [TBL] [Abstract][Full Text] [Related]
12. Lack of deuterium isotope effects in the antidepressant effects of (R)-ketamine in a chronic social defeat stress model. Zhang K; Toki H; Fujita Y; Ma M; Chang L; Qu Y; Harada S; Nemoto T; Mizuno-Yasuhira A; Yamaguchi JI; Chaki S; Hashimoto K Psychopharmacology (Berl); 2018 Nov; 235(11):3177-3185. PubMed ID: 30215218 [TBL] [Abstract][Full Text] [Related]
13. BDNF release and signaling are required for the antidepressant actions of GLYX-13. Kato T; Fogaça MV; Deyama S; Li XY; Fukumoto K; Duman RS Mol Psychiatry; 2018 Oct; 23(10):2007-2017. PubMed ID: 29203848 [TBL] [Abstract][Full Text] [Related]
14. Lack of metabolism in (R)-ketamine's antidepressant actions in a chronic social defeat stress model. Zhang K; Fujita Y; Hashimoto K Sci Rep; 2018 Mar; 8(1):4007. PubMed ID: 29507385 [TBL] [Abstract][Full Text] [Related]
15. Prelimbic cortex miR-34a contributes to (2R,6R)-hydroxynorketamine-mediated antidepressant-relevant actions. Ye L; Xiao X; Xu Y; Zheng C; Chen S; Luo T; Li Z; Du Y; Yuan Y; Li L; Liu B; Qin W; Chou D Neuropharmacology; 2022 May; 208():108984. PubMed ID: 35131296 [TBL] [Abstract][Full Text] [Related]
16. (S)-norketamine and (2S,6S)-hydroxynorketamine exert potent antidepressant-like effects in a chronic corticosterone-induced mouse model of depression. Yokoyama R; Higuchi M; Tanabe W; Tsukada S; Naito M; Yamaguchi T; Chen L; Kasai A; Seiriki K; Nakazawa T; Nakagawa S; Hashimoto K; Hashimoto H; Ago Y Pharmacol Biochem Behav; 2020 Apr; 191():172876. PubMed ID: 32088360 [TBL] [Abstract][Full Text] [Related]
17. A Pharmacological Evaluation of the Analgesic Effect and Hippocampal Protein Modulation of the Ketamine Metabolite (2R,6R)-Hydroxynorketamine in Murine Pain Models. Das V; Basovich MB; Thomas CJ; Kroin JS; Buvanendran A; McCarthy RJ Anesth Analg; 2024 May; 138(5):1094-1106. PubMed ID: 37319016 [TBL] [Abstract][Full Text] [Related]
18. Sexually Dimorphic Behavioral Profile in a Transgenic Model Enabling Targeted Recombination in Active Neurons in Response to Ketamine and (2R,6R)-Hydroxynorketamine Administration. Herzog DP; Mellema RM; Remmers F; Lutz B; Müller MB; Treccani G Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32244978 [TBL] [Abstract][Full Text] [Related]
19. Activity-Dependent Brain-Derived Neurotrophic Factor Release Is Required for the Rapid Antidepressant Actions of Scopolamine. Ghosal S; Bang E; Yue W; Hare BD; Lepack AE; Girgenti MJ; Duman RS Biol Psychiatry; 2018 Jan; 83(1):29-37. PubMed ID: 28751069 [TBL] [Abstract][Full Text] [Related]
20. Loss of the sustained antidepressant-like effect of (2R,6R)-hydroxynorketamine in NMDA receptor GluN2D subunit knockout mice. Yamagishi A; Ikekubo Y; Mishina M; Ikeda K; Ide S J Pharmacol Sci; 2024 Mar; 154(3):203-208. PubMed ID: 38395521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]