BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30559220)

  • 21. Genetic Dissection of the Fermentative and Respiratory Contributions Supporting Vibrio cholerae Hypoxic Growth.
    Bueno E; Sit B; Waldor MK; Cava F
    J Bacteriol; 2020 Nov; 202(24):. PubMed ID: 32631948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vibrio cholerae OmpR Contributes to Virulence Repression and Fitness at Alkaline pH.
    Kunkle DE; Bina XR; Bina JE
    Infect Immun; 2020 May; 88(6):. PubMed ID: 32284367
    [No Abstract]   [Full Text] [Related]  

  • 23. Anaerobic growth promotes synthesis of colonization factors encoded at the Vibrio pathogenicity island in Vibrio cholerae El Tor.
    Marrero K; Sánchez A; Rodríguez-Ulloa A; González LJ; Castellanos-Serra L; Paz-Lago D; Campos J; Rodríguez BL; Suzarte E; Ledón T; Padrón G; Fando R
    Res Microbiol; 2009; 160(1):48-56. PubMed ID: 19015025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorylation of the flagellar regulatory protein FlrC is necessary for Vibrio cholerae motility and enhanced colonization.
    Correa NE; Lauriano CM; McGee R; Klose KE
    Mol Microbiol; 2000 Feb; 35(4):743-55. PubMed ID: 10692152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vibrio cholerae leuO Transcription Is Positively Regulated by ToxR and Contributes to Bile Resistance.
    Ante VM; Bina XR; Howard MF; Sayeed S; Taylor DL; Bina JE
    J Bacteriol; 2015 Nov; 197(22):3499-510. PubMed ID: 26303831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathogenicity and virulence regulation of
    Hsiao A; Zhu J
    Virulence; 2020 Dec; 11(1):1582-1599. PubMed ID: 33172314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antagonism toward the intestinal microbiota and its effect on
    Zhao W; Caro F; Robins W; Mekalanos JJ
    Science; 2018 Jan; 359(6372):210-213. PubMed ID: 29326272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Indole Inhibits ToxR Regulon Expression in
    Howard MF; Bina XR; Bina JE
    Infect Immun; 2019 Mar; 87(3):. PubMed ID: 30617203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic citrate metabolism and its regulation in enterobacteria.
    Bott M
    Arch Microbiol; 1997; 167(2-3):78-88. PubMed ID: 9133329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Role of Nutrients and Nutritional Signals in the Pathogenesis of Vibrio cholerae.
    McDonald ND; Rosenberger JR; Almagro-Moreno S; Boyd EF
    Adv Exp Med Biol; 2023; 1404():195-211. PubMed ID: 36792877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective and Efficient Elimination of
    Oh YT; Kim HY; Kim EJ; Go J; Hwang W; Kim HR; Kim DW; Yoon SS
    Front Cell Infect Microbiol; 2016; 6():156. PubMed ID: 27900286
    [No Abstract]   [Full Text] [Related]  

  • 32. Role of a sensor histidine kinase ChiS of Vibrio cholerae in pathogenesis.
    Chourashi R; Mondal M; Sinha R; Debnath A; Das S; Koley H; Chatterjee NS
    Int J Med Microbiol; 2016 Dec; 306(8):657-665. PubMed ID: 27670078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anti-virulence activity of polyphenolic fraction isolated from Kombucha against Vibrio cholerae.
    Bhattacharya D; Sinha R; Mukherjee P; Howlader DR; Nag D; Sarkar S; Koley H; Withey JH; Gachhui R
    Microb Pathog; 2020 Mar; 140():103927. PubMed ID: 31846743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine.
    You JS; Yong JH; Kim GH; Moon S; Nam KT; Ryu JH; Yoon MY; Yoon SS
    Microbiome; 2019 Sep; 7(1):132. PubMed ID: 31521198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of a tetracycline inducible expression vector and characterization of its use in Vibrio cholerae.
    Bina XR; Wong EA; Bina TF; Bina JE
    Plasmid; 2014 Nov; 76():87-94. PubMed ID: 25451701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Haem utilization in Vibrio cholerae involves multiple TonB-dependent haem receptors.
    Mey AR; Payne SM
    Mol Microbiol; 2001 Nov; 42(3):835-49. PubMed ID: 11722746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the complexity of gene regulation by fur in Vibrio cholerae.
    Litwin CM; Calderwood SB
    J Bacteriol; 1994 Jan; 176(1):240-8. PubMed ID: 8282702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins.
    Bina XR; Howard MF; Taylor-Mulneix DL; Ante VM; Kunkle DE; Bina JE
    PLoS Pathog; 2018 Jan; 14(1):e1006804. PubMed ID: 29304169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The global regulators ArcA and CytR collaboratively modulate Vibrio cholerae motility.
    Li Y; Yan J; Guo X; Wang X; Liu F; Cao B
    BMC Microbiol; 2022 Jan; 22(1):22. PubMed ID: 35021992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae.
    Lim B; Beyhan S; Yildiz FH
    J Bacteriol; 2007 Feb; 189(3):717-29. PubMed ID: 17122338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.