These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30559302)

  • 1. Neuroligin tuning of pharyngeal pumping reveals extrapharyngeal modulation of feeding in
    Calahorro F; Keefe F; Dillon J; Holden-Dye L; O'Connor V
    J Exp Biol; 2019 Feb; 222(Pt 3):. PubMed ID: 30559302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired Dopamine-Dependent Locomotory Behavior of C. elegans Neuroligin Mutants Depends on the Catechol-O-Methyltransferase COMT-4.
    Rodríguez-Ramos Á; Gámez-Del-Estal MM; Porta-de-la-Riva M; Cerón J; Ruiz-Rubio M
    Behav Genet; 2017 Nov; 47(6):596-608. PubMed ID: 28879499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system.
    Trojanowski NF; Raizen DM; Fang-Yen C
    Sci Rep; 2016 Mar; 6():22940. PubMed ID: 26976078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human alpha- and beta-NRXN1 isoforms rescue behavioral impairments of Caenorhabditis elegans neurexin-deficient mutants.
    Calahorro F; Ruiz-Rubio M
    Genes Brain Behav; 2013 Jun; 12(4):453-64. PubMed ID: 23638761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of splice variants for the C. elegans orthologue of human neuroligin reveals a developmentally regulated transcript.
    Calahorro F; Holden-Dye L; O'Connor V
    Gene Expr Patterns; 2015 Mar; 17(2):69-78. PubMed ID: 25726726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes.
    Calahorro F; Ruiz-Rubio M
    PLoS One; 2012; 7(6):e39277. PubMed ID: 22723984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans.
    Dillon J; Holden-Dye L; O'Connor V; Hopper NA
    Invert Neurosci; 2016 Jun; 16(2):4. PubMed ID: 27209024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AutoEPG: software for the analysis of electrical activity in the microcircuit underpinning feeding behaviour of Caenorhabditis elegans.
    Dillon J; Andrianakis I; Bull K; Glautier S; O'Connor V; Holden-Dye L; James C
    PLoS One; 2009 Dec; 4(12):e8482. PubMed ID: 20041123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroligin modulates the locomotory dopaminergic and serotonergic neuronal pathways of C. elegans.
    Izquierdo PG; Calahorro F; Ruiz-Rubio M
    Neurogenetics; 2013 Nov; 14(3-4):233-42. PubMed ID: 24100941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabotropic Glutamate Receptors: MODULATORS OF CONTEXT-DEPENDENT FEEDING BEHAVIOUR IN C. ELEGANS.
    Dillon J; Franks CJ; Murray C; Edwards RJ; Calahorro F; Ishihara T; Katsura I; Holden-Dye L; O'Connor V
    J Biol Chem; 2015 Jun; 290(24):15052-65. PubMed ID: 25869139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity.
    Hunter JW; Mullen GP; McManus JR; Heatherly JM; Duke A; Rand JB
    Dis Model Mech; 2010; 3(5-6):366-76. PubMed ID: 20083577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonergic modulation of feeding behavior in Caenorhabditis elegans and other related nematodes.
    Ishita Y; Chihara T; Okumura M
    Neurosci Res; 2020 May; 154():9-19. PubMed ID: 31028772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EAT-20, a novel transmembrane protein with EGF motifs, is required for efficient feeding in Caenorhabditis elegans.
    Shibata Y; Fujii T; Dent JA; Fujisawa H; Takagi S
    Genetics; 2000 Feb; 154(2):635-46. PubMed ID: 10655217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharyngeal timing and particle transport defects in
    Brenner IR; Raizen DM; Fang-Yen C
    J Neurophysiol; 2022 Aug; 128(2):302-309. PubMed ID: 35730757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the underlying mechanisms of the pharyngeal pumping motions in
    Sherman D; Harel D
    Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2302660121. PubMed ID: 38315866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans.
    Zhao Y; Chen H; Yang Y; Wu Q; Wang D
    Sci Total Environ; 2020 Jan; 700():134492. PubMed ID: 31627046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide.
    Xiao G; Chen H; Krasteva N; Liu Q; Wang D
    J Nanobiotechnology; 2018 Apr; 16(1):45. PubMed ID: 29703212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans.
    Chen H; Li H; Wang D
    Sci Rep; 2017 Jan; 7():41655. PubMed ID: 28128356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal modulation of 5-HT and octopamine regulates pumping via feedforward and feedback circuits in
    Liu H; Qin LW; Li R; Zhang C; Al-Sheikh U; Wu ZX
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):7107-7112. PubMed ID: 30872487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The HLH-6 transcription factor regulates C. elegans pharyngeal gland development and function.
    Smit RB; Schnabel R; Gaudet J
    PLoS Genet; 2008 Oct; 4(10):e1000222. PubMed ID: 18927627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.