BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30559344)

  • 1. In vitro Chondrocyte Responses in Mg-doped Wollastonite/Hydrogel Composite Scaffolds for Osteochondral Interface Regeneration.
    Yu X; Zhao T; Qi Y; Luo J; Fang J; Yang X; Liu X; Xu T; Yang Q; Gou Z; Dai X
    Sci Rep; 2018 Dec; 8(1):17911. PubMed ID: 30559344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinted hydrogel model incorporating β-tricalcium phosphate for calcified cartilage tissue engineering.
    Kosik-Kozioł A; Costantini M; Mróz A; Idaszek J; Heljak M; Jaroszewicz J; Kijeńska E; Szöke K; Frerker N; Barbetta A; Brinchmann JE; Święszkowski W
    Biofabrication; 2019 May; 11(3):035016. PubMed ID: 30943457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications.
    Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects.
    Bernhardt A; Paul B; Gelinsky M
    Mar Drugs; 2018 Mar; 16(3):. PubMed ID: 29534027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects.
    Shao H; Liu A; Ke X; Sun M; He Y; Yang X; Fu J; Zhang L; Yang G; Liu Y; Xu S; Gou Z
    J Mater Chem B; 2017 Apr; 5(16):2941-2951. PubMed ID: 32263987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction.
    Chen L; Deng C; Li J; Yao Q; Chang J; Wang L; Wu C
    Biomaterials; 2019 Mar; 196():138-150. PubMed ID: 29643002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds.
    Shao H; Sun M; Zhang F; Liu A; He Y; Fu J; Yang X; Wang H; Gou Z
    J Dent Res; 2018 Jan; 97(1):68-76. PubMed ID: 29020507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of pore-wall in direct ink writing wollastonite scaffolds favorable for tuning biodegradation and mechanical stability and enhancing osteogenic capability.
    Ke X; Qiu J; Wang X; Yang X; Shen J; Ye S; Yang G; Xu S; Bi Q; Gou Z; Jia X; Zhang L
    FASEB J; 2020 Apr; 34(4):5673-5687. PubMed ID: 32115776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatically Cross-Linked Silk Fibroin-Based Hierarchical Scaffolds for Osteochondral Regeneration.
    Ribeiro VP; Pina S; Costa JB; Cengiz IF; García-Fernández L; Fernández-Gutiérrez MDM; Paiva OC; Oliveira AL; San-Román J; Oliveira JM; Reis RL
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):3781-3799. PubMed ID: 30609898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting.
    You F; Chen X; Cooper DML; Chang T; Eames BF
    Biofabrication; 2018 Dec; 11(1):015015. PubMed ID: 30524110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures.
    Amann E; Wolff P; Breel E; van Griensven M; Balmayor ER
    Acta Biomater; 2017 Apr; 52():130-144. PubMed ID: 28131943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of Mo-containing scaffolds with activated anabolic responses and bi-lineage bioactivities.
    Dang W; Wang X; Li J; Deng C; Liu Y; Yao Q; Wang L; Chang J; Wu C
    Theranostics; 2018; 8(16):4372-4392. PubMed ID: 30214627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrogenesis of mesenchymal stem cells in a novel hyaluronate-collagen-tricalcium phosphate scaffolds for knee repair.
    Meng FG; Zhang ZQ; Huang GX; Chen WS; Zhang ZJ; He AS; Liao WM
    Eur Cell Mater; 2016 Jan; 31():79-94. PubMed ID: 26728500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogel to guide chondrogenesis versus osteogenesis of mesenchymal stem cells for fabrication of cartilaginous tissues.
    Chen J; Chin A; Almarza AJ; Taboas JM
    Biomed Mater; 2020 May; 15(4):045006. PubMed ID: 31470441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask.
    Song K; Li W; Wang H; Zhang Y; Li L; Wang Y; Wang H; Wang L; Liu T
    Biomed Mater; 2016 Oct; 11(6):065002. PubMed ID: 27767021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration.
    Yang J; Liu Y; He L; Wang Q; Wang L; Yuan T; Xiao Y; Fan Y; Zhang X
    Acta Biomater; 2018 Jul; 74():156-167. PubMed ID: 29734010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate-collagen-hyaluronan without any exogenous growth factors in vitro.
    Meng F; He A; Zhang Z; Zhang Z; Lin Z; Yang Z; Long Y; Wu G; Kang Y; Liao W
    J Biomed Mater Res A; 2014 Aug; 102(8):2725-35. PubMed ID: 24026971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering.
    Khanarian NT; Jiang J; Wan LQ; Mow VC; Lu HH
    Tissue Eng Part A; 2012 Mar; 18(5-6):533-45. PubMed ID: 21919797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.