These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30559396)

  • 1. Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects.
    Xie C; Heumüller T; Gruber W; Tang X; Classen A; Schuldes I; Bidwell M; Späth A; Fink RH; Unruh T; McCulloch I; Li N; Brabec CJ
    Nat Commun; 2018 Dec; 9(1):5335. PubMed ID: 30559396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-Processed Organic Solar Cell with Efficiency Exceeding 11.
    Xie C; Liang S; Zhang G; Li S
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells.
    Xie C; Tang X; Berlinghof M; Langner S; Chen S; Späth A; Li N; Fink RH; Unruh T; Brabec CJ
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23225-23234. PubMed ID: 29926724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous Nanoparticle Polymer Solar Cells: Effects of Surfactant Concentration and Processing on Device Performance.
    Colberts FJM; Wienk MM; Janssen RAJ
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13380-13389. PubMed ID: 28345859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells.
    Gärtner S; Clulow AJ; Howard IA; Gilbert EP; Burn PL; Gentle IR; Colsmann A
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42986-42995. PubMed ID: 29083153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant Engineering and Its Role in Determining the Performance of Nanoparticulate Organic Photovoltaic Devices.
    Chowdhury R; Holmes NP; Cooling N; Belcher WJ; Dastoor PC; Zhou X
    ACS Omega; 2022 Mar; 7(11):9212-9220. PubMed ID: 35350329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eco-friendly fabrication of organic solar cells: electrostatic stabilization of surfactant-free organic nanoparticle dispersions by illumination.
    Marlow P; Manger F; Fischer K; Sprau C; Colsmann A
    Nanoscale; 2022 Apr; 14(14):5569-5578. PubMed ID: 35343987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design.
    Lee S; Jeong D; Kim C; Lee C; Kang H; Woo HY; Kim BJ
    ACS Nano; 2020 Nov; 14(11):14493-14527. PubMed ID: 33103903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating Charge Generation in Green-Solvent Processed Organic Solar Cells.
    Shoaee S; Sanna AL; Sforazzini G
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells.
    Baran D; Ashraf RS; Hanifi DA; Abdelsamie M; Gasparini N; Röhr JA; Holliday S; Wadsworth A; Lockett S; Neophytou M; Emmott CJ; Nelson J; Brabec CJ; Amassian A; Salleo A; Kirchartz T; Durrant JR; McCulloch I
    Nat Mater; 2017 Mar; 16(3):363-369. PubMed ID: 27869824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of Waterborne Organic Semiconductor Colloids for Photovoltaics.
    Holmes A; Deniau E; Lartigau-Dagron C; Bousquet A; Chambon S; Holmes NP
    ACS Nano; 2021 Mar; 15(3):3927-3959. PubMed ID: 33620200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic solar cells with graded absorber layers processed from nanoparticle dispersions.
    Gärtner S; Reich S; Bruns M; Czolk J; Colsmann A
    Nanoscale; 2016 Mar; 8(12):6721-7. PubMed ID: 26952692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyridine End-Capped Polymer to Stabilize Organic Nanoparticle Dispersions for Solar Cell Fabrication through Reversible Pyridinium Salt Formation.
    Saxena S; Marlow P; Subbiah J; Colsmann A; Wong WWH; Jones DJ
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36044-36052. PubMed ID: 34296593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing.
    Li S; Zhang H; Yue S; Yu X; Zhou H
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34822343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimisation of purification techniques for the preparation of large-volume aqueous solar nanoparticle inks for organic photovoltaics.
    Almyahi F; Andersen TR; Cooling NA; Holmes NP; Griffith MJ; Feron K; Zhou X; Belcher WJ; Dastoor PC
    Beilstein J Nanotechnol; 2018; 9():649-659. PubMed ID: 29527439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor.
    Holliday S; Ashraf RS; Wadsworth A; Baran D; Yousaf SA; Nielsen CB; Tan CH; Dimitrov SD; Shang Z; Gasparini N; Alamoudi M; Laquai F; Brabec CJ; Salleo A; Durrant JR; McCulloch I
    Nat Commun; 2016 Jun; 7():11585. PubMed ID: 27279376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of Thermally Induced Fullerene Aggregation in Polyfullerene-Based Multiacceptor Organic Solar Cells.
    Dowland SA; Salvador M; Perea JD; Gasparini N; Langner S; Rajoelson S; Ramanitra HH; Lindner BD; Osvet A; Brabec CJ; Hiorns RC; Egelhaaf HJ
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10971-10982. PubMed ID: 28263058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantiopure versus Racemic Naphthalimide End-Capped Helicenic Non-fullerene Electron Acceptors: Impact on Organic Photovoltaics Performance.
    Josse P; Favereau L; Shen C; Dabos-Seignon S; Blanchard P; Cabanetos C; Crassous J
    Chemistry; 2017 May; 23(26):6277-6281. PubMed ID: 28301059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eco-Friendly Push-Coated Polymer Solar Cells with No Active Material Wastes Yield Power Conversion Efficiencies over 5.5.
    Inaba S; Arai R; Mihai G; Lazar O; Moise C; Enachescu M; Takeoka Y; Vohra V
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10785-10793. PubMed ID: 30788961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic Semiconductors Processed from Synthesis-to-Device in Water.
    Rahmanudin A; Marcial-Hernandez R; Zamhuri A; Walton AS; Tate DJ; Khan RU; Aphichatpanichakul S; Foster AB; Broll S; Turner ML
    Adv Sci (Weinh); 2020 Nov; 7(21):2002010. PubMed ID: 33173736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.