BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 30559508)

  • 1. Metalloporphyrin Nanoparticles: Coordinating Diverse Theranostic Functions.
    Shao S; Rajendiran V; Lovell JF
    Coord Chem Rev; 2019 Jan; 379():99-120. PubMed ID: 30559508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications.
    Ni D; Jiang D; Ehlerding EB; Huang P; Cai W
    Acc Chem Res; 2018 Mar; 51(3):778-788. PubMed ID: 29489335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging.
    Imran M; Ramzan M; Qureshi AK; Khan MA; Tariq M
    Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30347683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current trends in pyrrole and porphyrin-derived nanoscale materials for biomedical applications.
    Fathi P; Pan D
    Nanomedicine (Lond); 2020 Oct; 15(25):2493-2515. PubMed ID: 32975469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced resonance Raman spectroscopy of porphyrin and metalloporphyrin species in systems with Ag nanoparticles and their assemblies.
    Vlcková B; Smejkal P; Michl M; Procházka M; Mojzes P; Lednický F; Pfleger J
    J Inorg Biochem; 2000 Apr; 79(1-4):295-300. PubMed ID: 10830880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Hf/Mn-TCPP Metal-Organic Framework Nanoparticles for Triple-Modality Imaging-Guided PTT/RT Synergistic Cancer Therapy.
    Bao J; Zu X; Wang X; Li J; Fan D; Shi Y; Xia Q; Cheng J
    Int J Nanomedicine; 2020; 15():7687-7702. PubMed ID: 33116495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Investigations, Cellular Imaging, and Radiolabeling of Neutral, Polycationic, and Polyanionic Functional Metalloporphyrin Conjugates.
    Ciaffaglione V; Waghorn PA; Exner RM; Cortezon-Tamarit F; Godfrey SP; Sarpaki S; Quilter H; Dondi R; Ge H; Kociok-Kohn G; Botchway SW; Eggleston IM; Dilworth JR; Pascu SI
    Bioconjug Chem; 2021 Jul; 32(7):1374-1392. PubMed ID: 33525868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of magnetic nanoparticles in cancer theranostics: Toward handheld diagnostic devices.
    Hajba L; Guttman A
    Biotechnol Adv; 2016; 34(4):354-361. PubMed ID: 26853617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media.
    Younis SA; Lim DK; Kim KH; Deep A
    Adv Colloid Interface Sci; 2020 Mar; 277():102108. PubMed ID: 32028075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-Orthogonal Conjugation of a Cationic Metalloporphyrin to BSA and HSA via "Click" Chemistry.
    Sandland J; Rimmer SD; Savoie H; Boyle RW
    Chembiochem; 2021 Aug; 22(16):2624-2631. PubMed ID: 34096676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging.
    Mulder WJ; Strijkers GJ; van Tilborg GA; Cormode DP; Fayad ZA; Nicolay K
    Acc Chem Res; 2009 Jul; 42(7):904-14. PubMed ID: 19435319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles: Liquid cored nanoparticles show better retention than a solid core formulation.
    Hervella P; Parra E; Needham D
    Eur J Pharm Biopharm; 2016 May; 102():64-76. PubMed ID: 26925504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metalloporphyrin-Encapsulated Biodegradable Nanosystems for Highly Efficient Magnetic Resonance Imaging-Guided Sonodynamic Cancer Therapy.
    Huang P; Qian X; Chen Y; Yu L; Lin H; Wang L; Zhu Y; Shi J
    J Am Chem Soc; 2017 Jan; 139(3):1275-1284. PubMed ID: 28024395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current and Future Theranostic Applications of the Lipid-Calcium-Phosphate Nanoparticle Platform.
    Satterlee AB; Huang L
    Theranostics; 2016; 6(7):918-29. PubMed ID: 27217828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of metalloporphyrin core metals in the mediated reductive dechlorination of tetrachloroethylene.
    Dror I; Schlautman MA
    Environ Toxicol Chem; 2003 Mar; 22(3):525-33. PubMed ID: 12627638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metalloporphyrins-Applications and clinical significance.
    Chandra R; Tiwari M; Kaur P; Sharma M; Jain R; Dass S
    Indian J Clin Biochem; 2000 Aug; 15(Suppl 1):183-99. PubMed ID: 23105282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy.
    Li L; Tong R; Li M; Kohane DS
    Acta Biomater; 2016 Mar; 33():34-9. PubMed ID: 26826531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theranostic magnetic nanoparticles.
    Yoo D; Lee JH; Shin TH; Cheon J
    Acc Chem Res; 2011 Oct; 44(10):863-74. PubMed ID: 21823593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metalloporphyrin Complex-Based Nanosonosensitizers for Deep-Tissue Tumor Theranostics by Noninvasive Sonodynamic Therapy.
    Ma A; Chen H; Cui Y; Luo Z; Liang R; Wu Z; Chen Z; Yin T; Ni J; Zheng M; Cai L
    Small; 2019 Feb; 15(5):e1804028. PubMed ID: 30589210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobically self-assembled nanoparticles as molecular receptors in water.
    Tomas S; Milanesi L
    J Am Chem Soc; 2009 May; 131(18):6618-23. PubMed ID: 19366207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.