These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30559677)

  • 1. Competing Mechanisms of Stress-Assisted Diffusivity and Stretch-Activated Currents in Cardiac Electromechanics.
    Loppini A; Gizzi A; Ruiz-Baier R; Cherubini C; Fenton FH; Filippi S
    Front Physiol; 2018; 9():1714. PubMed ID: 30559677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of mechano-electrical feedback and inertia in cardiac electromechanics.
    Costabal FS; Concha FA; Hurtado DE; Kuhl E
    Comput Methods Appl Mech Eng; 2017 Jun; 320():352-368. PubMed ID: 29056782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A note on stress-driven anisotropic diffusion and its role in active deformable media.
    Cherubini C; Filippi S; Gizzi A; Ruiz-Baier R
    J Theor Biol; 2017 Oct; 430():221-228. PubMed ID: 28755956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion.
    Propp A; Gizzi A; Levrero-Florencio F; Ruiz-Baier R
    Biomech Model Mechanobiol; 2020 Apr; 19(2):633-659. PubMed ID: 31630280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of mechano-electric feedback mechanisms on whole-heart activation, repolarization, and tension.
    Gerach T; Loewe A
    J Physiol; 2024 Jan; ():. PubMed ID: 38185911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative appraisal of mechano-electric feedback mechanisms in the heart.
    Timmermann V; Dejgaard LA; Haugaa KH; Edwards AG; Sundnes J; McCulloch AD; Wall ST
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):404-417. PubMed ID: 28851517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of mechanical feedback on the stability of cardiac scroll waves: A bidomain electro-mechanical simulation study.
    Colli Franzone P; Pavarino LF; Scacchi S
    Chaos; 2017 Sep; 27(9):093905. PubMed ID: 28964121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased cell membrane capacitance is the dominant mechanism of stretch-dependent conduction slowing in the rabbit heart: a computational study.
    de Oliveira BL; Pfeiffer ER; Sundnes J; Wall ST; McCulloch AD
    Cell Mol Bioeng; 2015 Jun; 8(2):237-246. PubMed ID: 27087858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mechano-electrical feedback on the onset of alternans: A computational study.
    Hazim A; Belhamadia Y; Dubljevic S
    Chaos; 2019 Jun; 29(6):063126. PubMed ID: 31266317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretch-activated current in human atrial myocytes and Na
    Zhan H; Zhang J; Jiao A; Wang Q
    Biomed Eng Online; 2019 Oct; 18(1):104. PubMed ID: 31653259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint influence of transmural heterogeneities and wall deformation on cardiac bioelectrical activity: A simulation study.
    Colli Franzone P; Pavarino LF; Scacchi S
    Math Biosci; 2016 Oct; 280():71-86. PubMed ID: 27545966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression of stretch-activated channels and mechanoelectric feedback in the heart.
    Kelly D; Mackenzie L; Hunter P; Smaill B; Saint DA
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):642-8. PubMed ID: 16789934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies.
    Mow VC; Guo XE
    Annu Rev Biomed Eng; 2002; 4():175-209. PubMed ID: 12117756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modelling of mechano-electric feedback and its arrhythmogenic effects in human ventricular models.
    Lee Y; Cansız B; Kaliske M
    Comput Methods Biomech Biomed Engin; 2022 Nov; 25(15):1767-1783. PubMed ID: 35238688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of wall stress on the dynamics of ventricular fibrillation: a simulation study using a dynamic mechanoelectric model of ventricular tissue.
    Hirabayashi S; Inagaki M; Hisada T
    J Cardiovasc Electrophysiol; 2008 Jul; 19(7):730-9. PubMed ID: 18284504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GEMS: A Fully Integrated PETSc-Based Solver for Coupled Cardiac Electromechanics and Bidomain Simulations.
    Arens S; Dierckx H; Panfilov AV
    Front Physiol; 2018; 9():1431. PubMed ID: 30386252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.
    Zhang J; Zhong Y; Gu C
    Med Biol Eng Comput; 2018 Dec; 56(12):2163-2176. PubMed ID: 29845488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model studies of the role of mechano-sensitive currents in the generation of cardiac arrhythmias.
    Rice JJ; Winslow RL; Dekanski J; McVeigh E
    J Theor Biol; 1998 Feb; 190(4):295-312. PubMed ID: 9533866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the Mechano-Electrical Feedback With Passive Mechanical Models on a 3D Rat Left Ventricle: A Computational Study.
    Du'o'ng MT; Holz D; Alkassar M; Dittrich S; Leyendecker S
    Front Physiol; 2019; 10():1041. PubMed ID: 31607936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating the effect of sodium channel blockage on cardiac electromechanics.
    Shalaby N; Zemzemi N; Elkhodary K
    Proc Inst Mech Eng H; 2020 Jan; 234(1):16-27. PubMed ID: 31625448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.