These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. 3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea. Bradshaw JJ; Brown MA; Jiang S; Gan RZ Ann Biomed Eng; 2023 May; 51(5):1106-1118. PubMed ID: 37036617 [TBL] [Abstract][Full Text] [Related]
8. 3D Finite Element Modeling of Blast Wave Transmission from the External Ear to Cochlea. Brown MA; Ji XD; Gan RZ Ann Biomed Eng; 2021 Feb; 49(2):757-768. PubMed ID: 32926269 [TBL] [Abstract][Full Text] [Related]
9. Low-cost blast wave generator for studies of hearing loss and brain injury: blast wave effects in closed spaces. Newman AJ; Hayes SH; Rao AS; Allman BL; Manohar S; Ding D; Stolzberg D; Lobarinas E; Mollendorf JC; Salvi R J Neurosci Methods; 2015 Mar; 242():82-92. PubMed ID: 25597910 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss. Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291 [TBL] [Abstract][Full Text] [Related]
11. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure. Jiang S; Smith K; Gan RZ Hear Res; 2019 Jul; 378():43-52. PubMed ID: 30630647 [TBL] [Abstract][Full Text] [Related]
12. Overpressure blast-wave induced brain injury elevates oxidative stress in the hypothalamus and catecholamine biosynthesis in the rat adrenal medulla. Tümer N; Svetlov S; Whidden M; Kirichenko N; Prima V; Erdos B; Sherman A; Kobeissy F; Yezierski R; Scarpace PJ; Vierck C; Wang KK Neurosci Lett; 2013 Jun; 544():62-7. PubMed ID: 23570732 [TBL] [Abstract][Full Text] [Related]
13. Structural and biochemical abnormalities in the absence of acute deficits in mild primary blast-induced head trauma. Walls MK; Race N; Zheng L; Vega-Alvarez SM; Acosta G; Park J; Shi R J Neurosurg; 2016 Mar; 124(3):675-86. PubMed ID: 26295915 [TBL] [Abstract][Full Text] [Related]
14. Evaluating Primary Blast Effects In Vitro. Logan NJ; Arora H; Higgins CA J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994788 [TBL] [Abstract][Full Text] [Related]
15. Physiologic responses to primary blast. Guy RJ; Kirkman E; Watkins PE; Cooper GJ J Trauma; 1998 Dec; 45(6):983-7. PubMed ID: 9867037 [TBL] [Abstract][Full Text] [Related]
16. Experimental investigation of a viscoelastic liner to reduce under helmet overpressures and shock wave reflections. Thomas CJH; Dogan F; Johnson CE Front Bioeng Biotechnol; 2024; 12():1455324. PubMed ID: 39280344 [TBL] [Abstract][Full Text] [Related]
17. Hearing protection and damage mitigation in Chinchillas exposed to repeated low-intensity blasts. Jiang S; Sanders S; Gan RZ Hear Res; 2023 Mar; 429():108703. PubMed ID: 36680874 [TBL] [Abstract][Full Text] [Related]
18. Antioxidant depletion, lipid peroxidation, and impairment of calcium transport induced by air-blast overpressure in rat lungs. Elsayed NM; Tyurina YY; Tyurin VA; Menshikova EV; Kisin ER; Kagan VE Exp Lung Res; 1996; 22(2):179-200. PubMed ID: 8706635 [TBL] [Abstract][Full Text] [Related]
19. Blast overpressure in rats: recreating a battlefield injury in the laboratory. Long JB; Bentley TL; Wessner KA; Cerone C; Sweeney S; Bauman RA J Neurotrauma; 2009 Jun; 26(6):827-40. PubMed ID: 19397422 [TBL] [Abstract][Full Text] [Related]