These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 30560117)

  • 1. Review of Graphene Growth From a Solid Carbon Source by Pulsed Laser Deposition (PLD).
    Bleu Y; Bourquard F; Tite T; Loir AS; Maddi C; Donnet C; Garrelie F
    Front Chem; 2018; 6():572. PubMed ID: 30560117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances on Pulsed Laser Deposition of Large-Scale Thin Films.
    Yu J; Han W; Suleiman AA; Han S; Miao N; Ling FC
    Small Methods; 2024 Jul; 8(7):e2301282. PubMed ID: 38084465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Growth of Wafer-Scale, Transparent, p-Type Reduced-Graphene-Oxide-like Thin Films by Pulsed Laser Deposition.
    Juvaid MM; Sarkar S; Gogoi PK; Ghosh S; Annamalai M; Lin YC; Prakash S; Goswami S; Li C; Hooda S; Jani H; Breese MBH; Rusydi A; Pennycook SJ; Suenaga K; Rao MSR; Venkatesan T
    ACS Nano; 2020 Mar; 14(3):3290-3298. PubMed ID: 32101687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-induced solid-phase doped graphene.
    Choi I; Jeong HY; Jung DY; Byun M; Choi CG; Hong BH; Choi SY; Lee KJ
    ACS Nano; 2014 Aug; 8(8):7671-7. PubMed ID: 25006987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene via sonication assisted liquid-phase exfoliation.
    Ciesielski A; Samorì P
    Chem Soc Rev; 2014 Jan; 43(1):381-98. PubMed ID: 24002478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene oxide obtention via liquid phase exfoliation from high-rank coal: A comparison of mineral matter removal by alkaline bath.
    Franco C; Lozano-Pérez AS; Mendieta-Reyes NE; Guerrero-Fajardo CA
    MethodsX; 2023; 10():102147. PubMed ID: 37064756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Materials for Applications.
    Yi K; Liu D; Chen X; Yang J; Wei D; Liu Y; Wei D
    Acc Chem Res; 2021 Feb; 54(4):1011-1022. PubMed ID: 33535000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties.
    Capasso A; Dikonimos T; Sarto F; Tamburrano A; De Bellis G; Sarto MS; Faggio G; Malara A; Messina G; Lisi N
    Beilstein J Nanotechnol; 2015; 6():2028-38. PubMed ID: 26665073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of the polyaniline thin films produced by the cluster beam deposition and laser ablation methods.
    Lim H; Choi JH
    J Chem Phys; 2006 Jan; 124(1):14710. PubMed ID: 16409054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transparent Conductive Electrodes Based on Graphene-Related Materials.
    Woo YS
    Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30587828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-Based Ammonia Sensors Functionalised with Sub-Monolayer V₂O₅: A Comparative Study of Chemical Vapour Deposited and Epitaxial Graphene †.
    Kodu M; Berholts A; Kahro T; Eriksson J; Yakimova R; Avarmaa T; Renge I; Alles H; Jaaniso R
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of fabrication methods of large-area transparent graphene electrodes for industry.
    Mustonen P; Mackenzie DMA; Lipsanen H
    Front Optoelectron; 2020 Jun; 13(2):91-113. PubMed ID: 36641556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Materials to Devices: Graphene toward Practical Applications.
    Yang Y; Wei Y; Guo Z; Hou W; Liu Y; Tian H; Ren TL
    Small Methods; 2022 Oct; 6(10):e2200671. PubMed ID: 36008156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Nitrogen-Doped Graphene on Copper Nanowires for Efficient Thermal Conductivity and Stability by Using Conventional Thermal Chemical Vapor Deposition.
    Park M; Ahn SK; Hwang S; Park S; Kim S; Jeon M
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31284632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene functionalised by laser-ablated V
    Kodu M; Berholts A; Kahro T; Kook M; Ritslaid P; Seemen H; Avarmaa T; Alles H; Jaaniso R
    Beilstein J Nanotechnol; 2017; 8():571-578. PubMed ID: 28382246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics.
    Gomez De Arco L; Zhang Y; Schlenker CW; Ryu K; Thompson ME; Zhou C
    ACS Nano; 2010 May; 4(5):2865-73. PubMed ID: 20394355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in carbon-based two-dimensional materials: synthesis and modification aspects for electrochemical sensors.
    Kirchner EM; Hirsch T
    Mikrochim Acta; 2020 Jul; 187(8):441. PubMed ID: 32656597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.