BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 30560208)

  • 1. Engineering and modification of microbial chassis for systems and synthetic biology.
    Chi H; Wang X; Shao Y; Qin Y; Deng Z; Wang L; Chen S
    Synth Syst Biotechnol; 2019 Mar; 4(1):25-33. PubMed ID: 30560208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the road to synthetic life: the minimal cell and genome-scale engineering.
    Juhas M
    Crit Rev Biotechnol; 2016; 36(3):416-23. PubMed ID: 25578717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial chassis engineering drives heterologous production of complex secondary metabolites.
    Liu J; Wang X; Dai G; Zhang Y; Bian X
    Biotechnol Adv; 2022 Oct; 59():107966. PubMed ID: 35487394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards next-generation model microorganism chassis for biomanufacturing.
    Liu Y; Su A; Li J; Ledesma-Amaro R; Xu P; Du G; Liu L
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):9095-9108. PubMed ID: 32970182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli minimum genome factory.
    Mizoguchi H; Mori H; Fujio T
    Biotechnol Appl Biochem; 2007 Mar; 46(Pt 3):157-67. PubMed ID: 17300222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis.
    Liu Y; Liu L; Li J; Du G; Chen J
    Trends Biotechnol; 2019 May; 37(5):548-562. PubMed ID: 30446263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Engineering photosynthetic cyanobacterial chassis: a review].
    Wu Q; Chen L; Wang J; Zhang W
    Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1086-99. PubMed ID: 24364346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a minimal genome as a chassis for synthetic biology.
    Sung BH; Choe D; Kim SC; Cho BK
    Essays Biochem; 2016 Nov; 60(4):337-346. PubMed ID: 27903821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Progress and perspective on development of non-model industrial bacteria as chassis cells for biochemical production in the synthetic biology era].
    Yang Y; Geng B; Song H; Hu M; He Q; Chen S; Bai F; Yang S
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):874-910. PubMed ID: 33783156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Advances in microbial genome reduction and modification].
    Wang J; Wang X
    Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1044-63. PubMed ID: 24364343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in genome annotation and synthetic biology for the development of microbial chassis.
    Hamese S; Mugwanda K; Takundwa M; Prinsloo E; Thimiri Govinda Raj DB
    J Genet Eng Biotechnol; 2023 Dec; 21(1):156. PubMed ID: 38038785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chassis engineering for microbial production of chemicals: from natural microbes to synthetic organisms.
    Liu J; Wu X; Yao M; Xiao W; Zha J
    Curr Opin Biotechnol; 2020 Dec; 66():105-112. PubMed ID: 32738762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering.
    Juhas M; Reuß DR; Zhu B; Commichau FM
    Microbiology (Reading); 2014 Nov; 160(Pt 11):2341-2351. PubMed ID: 25092907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of genomic islands in the Pseudomonas putida KT2440 genome can create an optimal chassis for synthetic biology applications.
    Liang P; Zhang Y; Xu B; Zhao Y; Liu X; Gao W; Ma T; Yang C; Wang S; Liu R
    Microb Cell Fact; 2020 Mar; 19(1):70. PubMed ID: 32188438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Scale Metabolic Modeling of Escherichia coli and Its Chassis Design for Synthetic Biology Applications.
    Mienda BS; Dräger A
    Methods Mol Biol; 2021; 2189():217-229. PubMed ID: 33180304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches.
    Bu QT; Yu P; Wang J; Li ZY; Chen XA; Mao XM; Li YQ
    Microb Cell Fact; 2019 Jan; 18(1):16. PubMed ID: 30691531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in plasmid-based tools for establishing novel microbial chassis.
    Nora LC; Westmann CA; Guazzaroni ME; Siddaiah C; Gupta VK; Silva-Rocha R
    Biotechnol Adv; 2019 Dec; 37(8):107433. PubMed ID: 31437573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites.
    Shen X; Wang Z; Huang X; Hu H; Wang W; Zhang X
    BMC Genomics; 2017 Sep; 18(1):715. PubMed ID: 28893188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of metabolic stress on genome stability of a synthetic biology chassis Escherichia coli K12 strain.
    Couto JM; McGarrity A; Russell J; Sloan WT
    Microb Cell Fact; 2018 Jan; 17(1):8. PubMed ID: 29357936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Less Is More: Toward a Genome-Reduced Bacillus Cell Factory for "Difficult Proteins".
    Aguilar Suárez R; Stülke J; van Dijl JM
    ACS Synth Biol; 2019 Jan; 8(1):99-108. PubMed ID: 30540431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.