These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30560653)

  • 1. Minimizing Trap Charge Density towards an Ideal Diode in Graphene-Silicon Schottky Solar Cell.
    Adhikari S; Biswas C; Doan MH; Kim ST; Kulshreshtha C; Lee YH
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):880-888. PubMed ID: 30560653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Power Graphene/ZnO Schottky UV Photodiodes with Enhanced Lateral Schottky Barrier Homogeneity.
    Lee Y; Kim DY; Lee S
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31137675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells.
    Song Y; Li X; Mackin C; Zhang X; Fang W; Palacios T; Zhu H; Kong J
    Nano Lett; 2015 Mar; 15(3):2104-10. PubMed ID: 25685934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.
    Kumar A; Kashid R; Ghosh A; Kumar V; Singh R
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8213-23. PubMed ID: 26963627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Surface States in Graphene/
    Maccagnani P; Pieruccini M
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface Electrode Morphology Effect on Carrier Concentration and Trap Defect Density in an Organic Photovoltaic Device.
    Kesavan AV; Rao AD; Ramamurthy PC
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28774-28784. PubMed ID: 28749650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals.
    Shtepliuk I; Eriksson J; Khranovskyy V; Iakimov T; Lloyd Spetz A; Yakimova R
    Beilstein J Nanotechnol; 2016; 7():1800-1814. PubMed ID: 28144530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Analysis of Graphene-Sheet-Based GaAs Schottky Solar Cell for Enriched Efficiency.
    Phimu LK; Dhar RS; Singh KJ; Banerjee A
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enhanced efficiency of graphene-silicon solar cells by electric field doping.
    Yu X; Yang L; Lv Q; Xu M; Chen H; Yang D
    Nanoscale; 2015 Apr; 7(16):7072-7. PubMed ID: 25588162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High efficiency graphene solar cells by chemical doping.
    Miao X; Tongay S; Petterson MK; Berke K; Rinzler AG; Appleton BR; Hebard AF
    Nano Lett; 2012 Jun; 12(6):2745-50. PubMed ID: 22554195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Power Conversion Efficiency of Graphene/Silicon Heterojunction Solar Cells Through NiO Induced Doping.
    Kuru C; Yavuz S; Kargar A; Choi D; Choi C; Rustomji C; Jin S; Bandaru PR
    J Nanosci Nanotechnol; 2016 Jan; 16(1):1190-3. PubMed ID: 27398585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Schottky Junction on Pillar Patterned Silicon Substrate.
    Luongo G; Grillo A; Giubileo F; Iemmo L; Lukosius M; Alvarado Chavarin C; Wenger C; Di Bartolomeo A
    Nanomaterials (Basel); 2019 Apr; 9(5):. PubMed ID: 31027368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS
    Joo MK; Moon BH; Ji H; Han GH; Kim H; Lee G; Lim SC; Suh D; Lee YH
    Nano Lett; 2016 Oct; 16(10):6383-6389. PubMed ID: 27649454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Performance of Polymeric Bulk Heterojunction Solar Cells via Molecular Doping with TFSA.
    Xiao Y; Wang H; Zhou S; Yan K; Guan Z; Tsang SW; Xu J
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13415-21. PubMed ID: 26039377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in solar energy harvesting integrated by van der Waals graphene heterojunctions.
    Le TK; Mai TH; Iqbal MA; Vernardou D; Dao VD; Ponnusamy VK; Rout CS; Pham PV
    RSC Adv; 2023 Oct; 13(44):31273-31291. PubMed ID: 37901851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications.
    Shanmugam M; Jacobs-Gedrim R; Song ES; Yu B
    Nanoscale; 2014 Nov; 6(21):12682-9. PubMed ID: 25210837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells.
    Jiao T; Liu J; Wei D; Feng Y; Song X; Shi H; Jia S; Sun W; Du C
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20179-83. PubMed ID: 26308388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ideal graphene/silicon Schottky junction diodes.
    Sinha D; Lee JU
    Nano Lett; 2014 Aug; 14(8):4660-4. PubMed ID: 25000510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing.
    Liu Z; Lau SP; Yan F
    Chem Soc Rev; 2015 Aug; 44(15):5638-79. PubMed ID: 26024242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene/Si Schottky solar cells: a review of recent advances and prospects.
    Kong X; Zhang L; Liu B; Gao H; Zhang Y; Yan H; Song X
    RSC Adv; 2019 Jan; 9(2):863-877. PubMed ID: 35517633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.