These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 30560777)

  • 21. When does pathogen evolution maximize the basic reproductive number in well-mixed host-pathogen systems?
    Cortez MH
    J Math Biol; 2013 Dec; 67(6-7):1533-85. PubMed ID: 23070214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The estimation of the basic reproduction number for infectious diseases.
    Dietz K
    Stat Methods Med Res; 1993; 2(1):23-41. PubMed ID: 8261248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utility of R0 as a predictor of disease invasion in structured populations.
    Cross PC; Johnson PL; Lloyd-Smith JO; Getz WM
    J R Soc Interface; 2007 Apr; 4(13):315-24. PubMed ID: 17251146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Bayesian inferential approach to quantify the transmission intensity of disease outbreak.
    Kadi AS; Avaradi SR
    Comput Math Methods Med; 2015; 2015():256319. PubMed ID: 25784956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of the basic reproductive number (R0) for epidemic, highly pathogenic avian influenza subtype H5N1 spread.
    Ward MP; Maftei D; Apostu C; Suru A
    Epidemiol Infect; 2009 Feb; 137(2):219-26. PubMed ID: 18559127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of the basic reproduction number of enterovirus 71 and coxsackievirus A16 in hand, foot, and mouth disease outbreaks.
    Ma E; Fung C; Yip SH; Wong C; Chuang SK; Tsang T
    Pediatr Infect Dis J; 2011 Aug; 30(8):675-9. PubMed ID: 21326133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Unraveling R₀: considerations for public health applications].
    Ridenhour B; Kowalik JM; Shay DK
    Rev Panam Salud Publica; 2015 Aug; 38(2):167-76. PubMed ID: 26581059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contact patterns and their implied basic reproductive numbers: an illustration for varicella-zoster virus.
    Effelterre TV; Shkedy Z; Aerts M; Molenberghs G; Damme PV; Beutels P
    Epidemiol Infect; 2009 Jan; 137(1):48-57. PubMed ID: 18466660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimating human-to-human transmissibility of hepatitis A virus in an outbreak at an elementary school in China, 2011.
    Zhang XS; Iacono GL
    PLoS One; 2018; 13(9):e0204201. PubMed ID: 30248120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecological effects on arbovirus-mosquito cycles of transmission.
    Tabachnick WJ
    Curr Opin Virol; 2016 Dec; 21():124-131. PubMed ID: 27693828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The basic reproduction number, R
    Neal P; Theparod T
    Math Biosci; 2019 Sep; 315():108224. PubMed ID: 31276681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generality of endemic prevalence formulae.
    Clancy D
    Math Biosci; 2015 Nov; 269():30-6. PubMed ID: 26321688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.
    van den Driessche P; Watmough J
    Math Biosci; 2002; 180():29-48. PubMed ID: 12387915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The basic reproductive number estimated from a Mycoplasma conjunctivae outbreak in a dairy goat farm.
    Hsu PC; Chao WH; He XX; Lai JM
    Prev Vet Med; 2017 Nov; 147():50-52. PubMed ID: 29254726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of the Basic Reproductive Number and Mean Serial Interval of a Novel Pathogen in a Small, Well-Observed Discrete Population.
    Wu KM; Riley S
    PLoS One; 2016; 11(2):e0148061. PubMed ID: 26849644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On a new perspective of the basic reproduction number in heterogeneous environments.
    Inaba H
    J Math Biol; 2012 Aug; 65(2):309-48. PubMed ID: 21842424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Outdoor and indoor monitoring of livestock-associated Culicoides spp. to assess vector-free periods and disease risks.
    Brugger K; Köfer J; Rubel F
    BMC Vet Res; 2016 Jun; 12():88. PubMed ID: 27259473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating the between-farm transmission rates for highly pathogenic avian influenza subtype H5N1 epidemics in Bangladesh between 2007 and 2013.
    Ssematimba A; Okike I; Ahmed GM; Yamage M; Boender GJ; Hagenaars TJ; Bett B
    Transbound Emerg Dis; 2018 Feb; 65(1):e127-e134. PubMed ID: 28805017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing intervention strategies for non-homogeneous populations using a closed form formula for R
    İşlier ZG; Hörmann W; Güllü R
    J Theor Biol; 2021 Feb; 511():110561. PubMed ID: 33347895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global dynamics of an SEIR epidemic model with saturating contact rate.
    Zhang J; Ma Z
    Math Biosci; 2003 Sep; 185(1):15-32. PubMed ID: 12900140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.