These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30560900)

  • 1. Source-device-independent heterodyne-based quantum random number generator at 17 Gbps.
    Avesani M; Marangon DG; Vallone G; Villoresi P
    Nat Commun; 2018 Dec; 9(1):5365. PubMed ID: 30560900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homodyne-based quantum random number generator at 2.9 Gbps secure against quantum side-information.
    Gehring T; Lupo C; Kordts A; Solar Nikolic D; Jain N; Rydberg T; Pedersen TB; Pirandola S; Andersen UL
    Nat Commun; 2021 Jan; 12(1):605. PubMed ID: 33504789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random numbers certified by Bell's theorem.
    Pironio S; Acín A; Massar S; de la Giroday AB; Matsukevich DN; Maunz P; Olmschenk S; Hayes D; Luo L; Manning TA; Monroe C
    Nature; 2010 Apr; 464(7291):1021-4. PubMed ID: 20393558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Source-Device-Independent Ultrafast Quantum Random Number Generation.
    Marangon DG; Vallone G; Villoresi P
    Phys Rev Lett; 2017 Feb; 118(6):060503. PubMed ID: 28234525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source-independent quantum random number generator against tailored detector blinding attacks.
    Liu WB; Lu YS; Fu Y; Huang SC; Yin ZJ; Jiang K; Yin HL; Chen ZB
    Opt Express; 2023 Mar; 31(7):11292-11307. PubMed ID: 37155768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical security analysis of a continuous-variable source-independent quantum random number generator based on heterodyne detection.
    Li Y; Fei Y; Wang W; Meng X; Wang H; Duan Q; Han Y; Ma Z
    Opt Express; 2023 Jul; 31(15):23813-23829. PubMed ID: 37475223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Certified Randomness from Untrusted Sources and Uncharacterized Measurements.
    Lin X; Wang R; Wang S; Yin ZQ; Chen W; Guo GC; Han ZF
    Phys Rev Lett; 2022 Jul; 129(5):050506. PubMed ID: 35960590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum generators of random numbers.
    Jacak MM; Jóźwiak P; Niemczuk J; Jacak JE
    Sci Rep; 2021 Aug; 11(1):16108. PubMed ID: 34373502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imperfection-insensitivity quantum random number generator with untrusted daily illumination.
    Lin X; Wang R; Wang S; Yin ZQ; Chen W; He DY; Zhou Z; Guo GC; Han ZF
    Opt Express; 2022 Jul; 30(14):25474-25485. PubMed ID: 36237076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-testing quantum random number generator.
    Lunghi T; Brask JB; Lim CC; Lavigne Q; Bowles J; Martin A; Zbinden H; Brunner N
    Phys Rev Lett; 2015 Apr; 114(15):150501. PubMed ID: 25933297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations.
    Nie YQ; Huang L; Liu Y; Payne F; Zhang J; Pan JW
    Rev Sci Instrum; 2015 Jun; 86(6):063105. PubMed ID: 26133826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation.
    Zheng Z; Zhang Y; Huang W; Yu S; Guo H
    Rev Sci Instrum; 2019 Apr; 90(4):043105. PubMed ID: 31043049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental quantum key distribution certified by Bell's theorem.
    Nadlinger DP; Drmota P; Nichol BC; Araneda G; Main D; Srinivas R; Lucas DM; Ballance CJ; Ivanov K; Tan EY; Sekatski P; Urbanke RL; Renner R; Sangouard N; Bancal JD
    Nature; 2022 Jul; 607(7920):682-686. PubMed ID: 35896644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open-Destination Measurement-Device-Independent Quantum Key Distribution Network.
    Cao WF; Zhen YZ; Zheng YL; Zhao S; Xu F; Li L; Chen ZB; Liu NL; Chen K
    Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimentally generated randomness certified by the impossibility of superluminal signals.
    Bierhorst P; Knill E; Glancy S; Zhang Y; Mink A; Jordan S; Rommal A; Liu YK; Christensen B; Nam SW; Stevens MJ; Shalm LK
    Nature; 2018 Apr; 556(7700):223-226. PubMed ID: 29643486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locality, Realism, Ergodicity and Randomness in Bell's Experiment.
    Hnilo AA
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time fast physical random number generator with a photonic integrated circuit.
    Ugajin K; Terashima Y; Iwakawa K; Uchida A; Harayama T; Yoshimura K; Inubushi M
    Opt Express; 2017 Mar; 25(6):6511-6523. PubMed ID: 28380999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Provably Secure Symmetric Private Information Retrieval with Quantum Cryptography.
    Kon WY; Lim CCW
    Entropy (Basel); 2020 Dec; 23(1):. PubMed ID: 33396236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing randomness of series generated in an optical Bell's experiment.
    Nonaka M; Agüero M; Kovalsky M; Hnilo A
    Appl Opt; 2023 Apr; 62(12):3105-3111. PubMed ID: 37133157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced BB84 quantum cryptography protocol for secure communication in wireless body sensor networks for medical applications.
    V AD; V K
    Pers Ubiquitous Comput; 2023; 27(3):875-885. PubMed ID: 33758585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.