These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
890 related articles for article (PubMed ID: 30561019)
1. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel. Barcellini C; Dumbill S; Jimenez-Melero E J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019 [TBL] [Abstract][Full Text] [Related]
2. Effect of Neutron Irradiation on the Mechanical Properties, Swelling and Creep of Austenitic Stainless Steels. Griffiths M Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067918 [TBL] [Abstract][Full Text] [Related]
3. Influence of 40% Cold Working and Annealing on Precipitation in AISI 316L Austenitic Stainless Steel. Bártová K; Dománková M; Bárta J; Pastier P Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143798 [TBL] [Abstract][Full Text] [Related]
4. Study of recovery and first recrystallisation kinetics in CGO Fe3%Si steels using misorientation-derived parameters (EBSD). Cruz-Gandarilla F; Bolmaro RE; Mendoza-León HF; Salcedo-Garrido AM; Cabañas-Moreno JG J Microsc; 2019 Sep; 275(3):133-148. PubMed ID: 31271444 [TBL] [Abstract][Full Text] [Related]
5. In-situ SEM observation of grain growth in the austenitic region of carbon steel using thermal etching. Heard R; Dragnevski KI; Siviour CR J Microsc; 2020 Sep; 279(3):249-255. PubMed ID: 32259284 [TBL] [Abstract][Full Text] [Related]
6. In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel. Rahimi S; Engelberg DL; Duff JA; Marrow TJ J Microsc; 2009 Mar; 233(3):423-31. PubMed ID: 19250463 [TBL] [Abstract][Full Text] [Related]
7. Precipitation within localised chromium-enriched regions in a Type 316H austenitic stainless steel. Warren AD; Griffiths IJ; Flewitt PEJ J Mater Sci; 2018; 53(8):6183-6197. PubMed ID: 31983773 [TBL] [Abstract][Full Text] [Related]
8. Precipitation Evolution in the Austenitic Heat-Resistant Steel HR3C upon Creep at 700 °C and 750 °C. Xu L; He Y; Kang Y; Jung JS; Shin K Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806827 [TBL] [Abstract][Full Text] [Related]
9. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel. Cizek P; Whiteman JA; Rainforth WM; Beynon JH J Microsc; 2004 Mar; 213(3):285-95. PubMed ID: 15009696 [TBL] [Abstract][Full Text] [Related]
10. Oxidation Damage Evolution in Low-Cycle Fatigue Life of Niobium-Stabilized Austenitic Stainless Steel. Choi WK; Ha S; Kim JC; Park JC; Gong A; Kim TW Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744131 [TBL] [Abstract][Full Text] [Related]
11. The Intergranular Corrosion Susceptibility of Metastable Austenitic Cr⁻Mn⁻Ni⁻N⁻Cu High-Strength Stainless Steel under Various Heat Treatments. Liu G; Liu Y; Cheng Y; Li J; Jiang Y Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035439 [TBL] [Abstract][Full Text] [Related]
12. Effect of Cold-Rolling Reduction on Recrystallization Microstructure, Texture and Corrosion Properties of the X2CrNi12 Ferritic Stainless Steel. Li R; Fu B; Wang Y; Li J; Dong T; Li G; Zhang G; Liu J Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234254 [TBL] [Abstract][Full Text] [Related]
13. Improvement in Grain Size Distribution Uniformity for Nuclear-Grade Austenitic Stainless Steel through Thermomechanical Treatment. Wang Y; Xue W; Pang Z; Zhao Z; Liu Z; Liu C; Gao F; Li W Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793381 [TBL] [Abstract][Full Text] [Related]
14. The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel. Engelberg DL; Humphreys FJ; Marrow TJ J Microsc; 2008 Jun; 230(Pt 3):435-44. PubMed ID: 18503670 [TBL] [Abstract][Full Text] [Related]
15. On the mechanical behavior of austenitic stainless steel with nano/ultrafine grains and comparison with micrometer austenitic grains counterpart and their biological functions. Gong N; Hu C; Hu B; An B; Misra RDK J Mech Behav Biomed Mater; 2020 Jan; 101():103433. PubMed ID: 31539734 [TBL] [Abstract][Full Text] [Related]
16. Metallographic Evaluation of Increased Susceptibility to Intermediate Embrittlement of Engine Valve Forgings Made of NCF 3015 High Nickel and Chromium Steel. Lachowicz MM; Zwierzchowski M; Hawryluk M; Gronostajski Z; Janik M Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834507 [TBL] [Abstract][Full Text] [Related]
17. Strain Evolution in Cold-Warm Forged Steel Components Studied by Means of EBSD Technique. Ferro P; Bonollo F; Bassan F; Berto F Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29258249 [TBL] [Abstract][Full Text] [Related]
18. Microstructure evolution and dislocation behaviour in high chromium, fully ferritic steels strengthened by intermetallic Laves phases. Lopez Barrilao J; Kuhn B; Wessel E Micron; 2018 May; 108():11-18. PubMed ID: 29544163 [TBL] [Abstract][Full Text] [Related]
19. Investigation of microstructure evolution and martensite transformation developed in austenitic stainless steel subjected to a plastic strain gradient: A combination study of Mirco-XRD, EBSD, and ECCI techniques. Berahmand M; Ketabchi M; Jamshidian M; Tsurekawa S Micron; 2021 Apr; 143():103014. PubMed ID: 33549854 [TBL] [Abstract][Full Text] [Related]
20. Effect of Deformation Conditions on Strain-Induced Precipitation of 7Mo Super-Austenitic Stainless Steel. Xu S; He J; Zhang R; Zhang F; Wang X Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]