These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30561180)

  • 1. Elucidating Lithium Alloying-Induced Degradation Evolution in High-Capacity Electrodes.
    Juarez-Robles D; Gonzalez-Malabet HJ; L'Antigua M; Xiao X; Nelson GJ; Mukherjee PP
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):563-577. PubMed ID: 30561180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries.
    Ebner M; Marone F; Stampanoni M; Wood V
    Science; 2013 Nov; 342(6159):716-20. PubMed ID: 24136360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Focused Ion Beam Scanning Electron Microscope Study of Microstructural Evolution of Single Tin Particle Anode for Li-Ion Batteries.
    Zhou X; Li T; Cui Y; Fu Y; Liu Y; Zhu L
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1733-1738. PubMed ID: 30605303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale Electrochemomechanics Interaction and Degradation Analytics of Sn Electrodes for Sodium-Ion Batteries.
    Sarkar S; Gonzalez-Malabet HJ; Flannagin M; L'Antigua A; Shevchenko PD; Nelson GJ; Mukherjee PP
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29711-29721. PubMed ID: 35727222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage.
    Ni J; Zhu X; Yuan Y; Wang Z; Li Y; Ma L; Dai A; Li M; Wu T; Shahbazian-Yassar R; Lu J; Li L
    Nat Commun; 2020 Mar; 11(1):1212. PubMed ID: 32139691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Behavior of Sn/Cu
    Lee HJ; Choi JS; Ha JK; Shim YJ; Ahn JH; Cho KK
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6455-6458. PubMed ID: 29677813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries.
    Doherty J; McNulty D; Biswas S; Moore K; Conroy M; Bangert U; O'Dwyer C; Holmes JD
    Nanotechnology; 2020 Apr; 31(16):165402. PubMed ID: 31891917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance.
    Li Z; Ding J; Mitlin D
    Acc Chem Res; 2015 Jun; 48(6):1657-65. PubMed ID: 26046961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model.
    Radvanyi E; Porcher W; De Vito E; Montani A; Franger S; Jouanneau Si Larbi S
    Phys Chem Chem Phys; 2014 Aug; 16(32):17142-53. PubMed ID: 25010355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using X-ray Microscopy To Understand How Nanoporous Materials Can Be Used To Reduce the Large Volume Change in Alloy Anodes.
    Cook JB; Lin TC; Detsi E; Weker JN; Tolbert SH
    Nano Lett; 2017 Feb; 17(2):870-877. PubMed ID: 28054788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.
    Osiak MJ; Armstrong E; Kennedy T; Torres CM; Ryan KM; O'Dwyer C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8195-202. PubMed ID: 23952971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unravelling the Impact of Reaction Paths on Mechanical Degradation of Intercalation Cathodes for Lithium-Ion Batteries.
    Li J; Zhang Q; Xiao X; Cheng YT; Liang C; Dudney NJ
    J Am Chem Soc; 2015 Nov; 137(43):13732-5. PubMed ID: 26477353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Silicon Electrode Aging upon Cycling in Full Lithium-Ion Batteries.
    Delpuech N; Dupre N; Moreau P; Bridel JS; Gaubicher J; Lestriez B; Guyomard D
    ChemSusChem; 2016 Apr; 9(8):841-8. PubMed ID: 26915951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding capacity fading of the LiVO
    Fu X; Pu X; Wang H; Zhao D; Liu G; Zhao D; Chen Z
    Phys Chem Chem Phys; 2019 Mar; 21(13):7009-7015. PubMed ID: 30869669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries.
    Iwamura S; Nishihara H; Ono Y; Morito H; Yamane H; Nara H; Osaka T; Kyotani T
    Sci Rep; 2015 Jan; 5():8085. PubMed ID: 25626879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoporous Tin with a Granular Hierarchical Ligament Morphology as a Highly Stable Li-Ion Battery Anode.
    Cook JB; Detsi E; Liu Y; Liang YL; Kim HS; Petrissans X; Dunn B; Tolbert SH
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):293-303. PubMed ID: 28005328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems.
    Lin CF; Qi Y; Gregorczyk K; Lee SB; Rubloff GW
    Acc Chem Res; 2018 Jan; 51(1):97-106. PubMed ID: 29293316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of fluoroethylene carbonate effects on tin-based lithium-ion battery electrodes.
    Yang Z; Gewirth AA; Trahey L
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6557-66. PubMed ID: 25741901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of SnO2 Asymmetric Membranes for High Performance Lithium Battery Anode.
    Wu J; Chen H; Byrd I; Lovelace S; Jin C
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13946-56. PubMed ID: 27192180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.